FIELD MEASUREMENT OF BUMP MAGNETS FOR J-PARC SLOW EXTRACTION

Eiichi Yanaoka, Katsuya Okamura, Masafumi Tawada, Masahito Tomizawa ^{A)} High Energy Accelerator Research Organization(KEK) 1-1 Oho, Tsukuba, Ibaraki, 305-0801

Abstract

At Slow Extraction of J-PARC MR ring, Bump Magnets make bump orbit and increase efficiency of extraction. Before Bump Magnets are installed, we measure magnetic field of Bump Magnets for a performance test.

J-PARC 遅い取出しバンプ電磁石磁場測定

1. はじめに

J-PARC 主リングの遅い取出しでは、4 台のバン プ電磁石でバンプ軌道を形成している。(図1)

図1 J-PARC 遅い取出し概略図

バンプ電磁石の構造は、上下に磁極がある2極電 磁石である。(図2)バンプ電磁石はスピル量によ り磁場を変化させる為、渦電流による磁場の遅れを 軽減したい。また、取出し点の近くで、出し際の ビームロスの影響を受けるため、交換等がしやすい 架台になっている。

Sp	ecification
Field Effective Length Useful Apertune Gap Height Length (including coil) Cooling Water Pressure Cooling Water Amount Water Temperature Rise Number	0.7T 1.4m 140mm 132mm 1700mm 0.4Mpa 18L/min 11 degC 4

図2 バンプ電磁石

なお、4台の電磁石はまったく同じ仕様であが加 速空洞内に設置した場所で上流から1、2、3、4と 番号を付けている。

2. 基準座の測定(工作精度)

電磁石を加速器空洞内に設置する際には、磁極を 正確に位置決めしなければならない。電磁石のアラ イメントの位置測定に使うのは電磁石鉄芯の上に付 けられている基準座である。したがって基準座と磁 極の位置関係、水平度をおさえていなければならな い。

基準座は、150mmX150mmの平らな面の真ん中に アライメント用の球面ターゲットを取付けるための 穴が開いており、鉄芯上面の Transverse 方向の真中 に上流側下流側に1つづつ付いている。

図3 基準座測定

まず基準座の水平面をつかい水平にし(図 3①)、オートレベルで横から上鉄芯と下鉄芯の合 わせ面の高さを等間隔に片側10箇所測る(図 3②)。その際鉄芯の歪みがあるので、2つの基準 座に矛盾が生じるが、歪みは均等に配分する。測角 儀を、上下流の基準座につけた測定用のターゲット (図3③)を参照しながら、測角儀をターゲット中 心の延長線上にセットし、その測角儀をしたにむけ 磁極を測定する(図3④)。

					unit:mrad
		Bump 1	Bump 2	Bump 3	Bump 4
Base1	Transverse Inclination	0.01	0.03	0.01	-0.04
	Longitudinal Inclination	0.1	0.06	0.06	0.05
Base2	Transverse Inclination	-0.03	-0.03	0	0.04
	Longitudinal Inclination	-0.09	-0.07	-0.05	-0.03
Base1	t上流側の基準座。Base2	は下流側			

ビームの進む方向にむかって外側(右側)、前が高いときプラス 図4 基準座の傾き 合わせ面の高さを、ビーム進行方向上流の外側を 0として左周りに各点をグラフにしたのが図5であ る。塗装の上からの測定で測定誤差がおおきいが 1.5mmにおさまっている。磁極中心のずれは目視で の測定では正確に測れない程度のずれである。基準 座の測定は、測定というより製作の間違いがないか の確認となった。

図5 鉄芯合わせ面高さ

				unit:mm			
	Bump 1	Bump 2	Bump 3	Bump 4			
Upper Side	0.1	-0.1	-0.02	. 0			
Lower Side	-0.07	-0.04	-0.04	0.04			
ビームの進方向に向かって右が正							

図6 磁極中心のずれ

3. 磁場測定

3.1 励磁曲線の測定

まずは、中心にホール素子をおいての磁場の確認 である。

図7 起磁力と磁場の関係

電源の制約の為直流で定格いっぱいに電流を流す ことが出来ない。その為 NMR での校正が出来てい ないが、直流が流せる 3.7T までの範囲では 0.1%程 度に収まっている事を確認した。また、各マグネッ ト間の差より磁場計算との差の方が大きい。これは、 測定がうまくいって各マグネットの個性が少ないこ とを示している。

3.2 マッピング測定

4 台のうちー台は磁場分布を測定した。これは、 ピックアップコイルの測定に使うコイルの校正にも 必要である。

図8 ピックアップコイルの校正

コイルを磁極間に置き電流を 0A から 400A まで あげたときの起電力を測り、コイルを置いた場所の 400A(i010,i069)のときと 0A(i032,i078)のときの磁 場の分布を測定しその差を積分する。磁場の面積積 分が起電と等しいので、この 2 つを比較することで コイル面の面積(変換の係数)がわかる。

図9 Longitudinal 方向の磁場分布

3.3 ピックアップコイルをつかった BL 積測定

バンプ電磁石はビーム軌道を曲げる電磁石で、そ の曲げる角度はBL積によって決まってくる。その 為この測定が今回の測定の中で最重要なものである。

図10 ピックアップコイルを使った測定

Bl積のエキサイテーションカーブ(図11)をみると。必要なBL積(1Tm)が出ているのが確認できる。またスピルにあわせて軌道を変えるとき制御を容易にするために、なるべく磁場と電流が一次の係数で結べることが望ましいが、その確認もこの測定でできる。

図11 BL積エキサイティーション

バンプ電磁石の特徴として4台でバンプ軌道を形 成するので、4台の個性が一緒であることが望まし い。その為に4台の鉄芯とも同一の炉で出来た鉄で 製造されている。

図12 4台のBL積比較

Bump2を基準にしたとき、最も誤差が大きいところは 0.3Tm 付近で 0.1%であった。

図 13 Bump2 の各電流値に対する BL 積分布

さらにビームの安定な領域でビームにあたえる影響が均一である必要があるために Transverse 方向の BL 分布が平らである必要がある。それを測定した 結果が図 13 である。ビームアパーチャーは φ130 m mであるが、各電流とも BL 積は 0.2%にの差しかな い磁場計算の繰返しの結果であろう。この分布につ いてマグネットの個性をみたのが図 14 である。

図 14 各電磁石の Transverse BL 積分布

4. バンプ電源

主目的は、磁場測定であったが電流値も正確にわ かっていないと意味がない。本番でもつかう電源に 外付けの DCCT をとりつけて磁場測定に使用した。 バンプ電磁石は加速後の取出しのときのみ電流がな がれるパターン電流で励磁する。このような場合問 題が発生しがちなのが立ち上がりである。立ち上が りのところが電源にとって一番きついのと0からの 立ち上がりのであるから何かしらの電源の状態がか わるためである。

図14 パターン立ち上がり部の電流とBL積 図14は立ち上がり部を拡大したものである。1ミ リ秒ごとのデータを入力しているその間を補間して 電流制御しているはずであるが、ミリセック程の階 段状のグラフになっている。のちの参考になるであ ろう。

5. まとめ

磁場測定により電流と磁場の関係式がもとまり加 速器の運転の際に役だっている。現在スピルやスピ ル波形整形様の電磁石の信号をフィードバックして バンプ電磁石を動かすシステムを構築中である。

参考文献[1] E.Yanaoka, et al., "Proceedings of the 4th Annual Meeting of Particle Accelerator Society of Japan and the 32nd Linear Accelerator Meeting of Japan(August 1-3, 2007, Wako Japan),p778-790

[2] M.Tomisawa, et al., "Proceedings of the 8th European Particle Accelerator Conference", 2002, p1058-1060