Present Status of HIMAC injectors at NIRS

Yuhsei Kageyama^{A)}, Izumi Kobayashi^{A)}, Mitugu Yamamoto^{A)}, Hiroshi Izumiya^{A)}, Wataru Takasugi^{A)},

Takeshi Takeuchi^{A)}, Tetuya Sakuma^{A)}, Toshinobu Sasano^{A)}, Noriyuki Sasaki^{A)}, Tomohiro Nagahori^{A)},

Teturou Kawaguchi^{A)}, Hisao Oosone^{A)}, Eiichi Takada^{B)}, Yoshiyuki Iwata^{B)}, Shinji Sato^{B)}, Masayuki Muramatsu^{B)}

^{A)} Accelerator Engineering Corporation

KA building 3-8-5 Konakadai, Inage-ku, Chiba-shi, 263-0043

^{B)} National Institute of Radiological Sciences

4-9-1 Anagawa, Inage-ku, Chiba-shi, 263-8555

Abstract

A HIMAC injector is equipped with three ion souces, and provides heavy ions from H to Xe with three ion sources. A heavy-ion beam, as accelerated with the injectors, can be transported to the HIMAC synchrotrons as well as the medium beam-energy line with time sharing operation. Furthermore, a compact injector is recently installed as a second injector of HIMAC, and will be used for treatment operation. In this paper, we report an overview of the HIMAC injectors.

HIMAC入射器の現状

1. はじめに

放医研の重イオン加速器HIMACは順調な治療及 び生物・物理実験ビームの供給を続けている。特に 重粒子線がん治療は良好な治療成績を収め、現在ま での登録患者数は5200名を超えている。患者数は 年々増加しており、現在、年間700名を超える治療 を行っている。

ここではHIMAC入射器の概要と運用状況、及び これまで整備を続けてきた高効率小型入射器組込み の現状と今後のスケジュールについて報告する。

2. HIMAC入射器概要と運用状況

2.1 HIMAC入射器機器構成と時分割加速

HIMAC入射器には図1のように3台のイオン源を 有し、昼間の治療には10 GHzのマイクロ波を用いた ECRイオン源(NIRS-ECR)よりCビームを供給し、夜 間の実験ではNIRS-ECRに加え、18 GHzのECRイオ ン源(NIRS-HEC)及びPIGイオン源(NIRS-PIG)から 様々なイオン種の供給を行っている。

イオン源で生成された8keV/uの重イオンをRFQ、 アルバレ型DTLの線形加速器により6MeV/uまで加 速し、上シンクロトロン(USYN)と下シンクロトロ ン(LSYN)及び、中エネルギービームライン(MEXP) への供給を行っている。

図1 HIMAC入射器のレイアウト。

HIMAC入射器では3台のイオン源から3つのイオ ン種をUSYN、LSYN及びMEXPに独立した3つの モードにて最大3Hzの繰り返し周期で供給するタイ ムシェアリング運転を実施している。この運転を可 能とさせる為、HIMAC入射器の電磁石と電源やRF、 モニタ(検出)等の機器はパルス機器で構成されて いる。

これらパルス機器を1つのタイミングパルスで動 作させる為のタイミング送信系統図を図2に示す。 シンクロトロンから発令される入射要請(イベント 信号)は基準信号発生装置(図2の①)が受取り、基 準信号選択装置(図2の②)に入力される。更に基準 信号選択装置は選択されたイオン源とコースに対し、 トリガ信号を各同期信号発生装置(図2の③)で分配 後、各制御装置(図2の④)に入力することで機器を 一斉に動作させている。

図中赤色部分:上または下イベント信号、黒色部 分:通信系イーサーネットである。

図3は上下イベント周期が3.3秒時のタイムシェ アリング運転の例である。HIMAC入射器からは図 3の繰り返し周期にて、USYN及びLSYNヘビーム を輸送する。また、MEXP用のトリガは上下のイベ ントトリガ間から基準信号選択装置(図2の②)で設 定された挿入回数のトリガが生成され、各機器に送 信される。一方、HIMAC入射器には数百の機器が 配置されており、各機器の立ち上がり時間の差異 により、動作タイミングにそれぞれ違いが有る。 これらの機器を図3の繰り返し周期毎に一斉に動 作させる為に、図4のように各機器のフラット トップ時間をビームポイントである165msのタイ ミングに合わせる必要がある。各同期信号発生装 置では装置毎にこの時間設定を行い、全ての機器 動作がビームポイント時間に揃うようにしている。

図4 同期信号系による負荷動作タイミング例

タイムシェアリング運転におけるもう一つの特徴 として、1つのイオン源から複数のイオン価数を コース毎に供給することである。図5のように例え ばNIRS-HECからArを供給する場合、イオン源での 生成価数は同じであるが、アルバレ型DTL出口に設 置してあるカーボンフォイルストリッパ(CFS)に より荷電変換されたそれぞれのイオン価数をUSYN、 LSYN、MEXPに供給する事ができる。このような 運用を行うことで、イオン源準備も1台で済むのと 供給調整時間の短縮にも繋がっている。

2.2イオン種生成及び運転状況

HIMAC入射器では一年を通してスケジュールさ れるマシンタイム表に従い、3台のイオン源よりH からXeまでの幅広いイオン種を生成、供給を行って いる。

各イオン源からの運転比率を図6に示す。HIMAC では毎週月曜日から土曜日まで(例外を除く)昼夜 運転を実施している。NIRS-ECRでは日中の火曜日 から金曜日までの治療と夜間の実験で利用され、全 体の53%の割合を占めている。一方、NIRS-ECRに 加え、夜間と週末の実験としてNIRS-HECでは28%、 NIRS-PIGでは19%の利用割合を占めている。

図7に各イオン源とイオン種別の運転実績を示す。 NIRS-ECRからは先に述べたように昼夜Cビームを 供給している。また夜間の実験では、より重いイオ ン種の生成が可能なNIRS-HECから主にFe、Kr、Xe 等の多価イオンを供給し、NIRS-PIGでは比較的軽 いイオンであるH、He、Ne等を供給している。

ガス材料以外からのイオン生成として、NIRS-PIGからは固体試料をスパッターする方法で、Ca、 Co、Mg、Si、B等を生成している。更にNIRS-HEC では目的とする元素を含む固体又は液体化合物の 蒸気を利用したMIVOC法^[1]によるTi、Fe、Ge、Co、 B、Si等の生成試験に成功し、実際のビーム供給に 用いている。これにより供給可能なイオン種が増え、 これまで以上にユーザーからの多様なニーズに応え られるようになった。

今後もNIRS-PIGとNIRS-HECから様々なイオン 種を生成、加速する予定である。

3. 高効率小型入射器の組込みと今後

3.1 高効率小型入射器の導入

重粒子線がん治療の良好な臨床実績から、重粒子 線がん治療装置の普及が世界的に望まれている。こ のような背景から、放医研では平成16~17年度にお いて、がん治療装置の普及に向けた重粒子線がん治 療装置の小型化に関する研究を行ってきた。その一 環で開発された高効率小型入射器をHIMACへ移設 し、第2入射器として利用すべくこれまで整備を進 めている。高効率小型入射器をHIMACへ組み込む 事で装置の二重化が更に進み、より安定した治療 ビームの供給が見込まれる。

3.2 高効率小型入射器の特徴

高効率小型入射器とHIMAC入射器の大きさの 比較を図8及び写真1に示す。図からわかるように、 全長で約1/7と大幅な小型化に成功している。また、 省電力設計により消費電力量は約1/10程度となり装 置維持費の面でも大きな利点が見込まれる。ここで は高効率小型入射器のイオン源と小型RFQ線形加速 器及び、IH型DTLの特徴について述べる。

最初にイオン源(NIRS-KIS)を写真2に示す。 NIRS-KISの特徴としては表1の通り必要な磁場を全 ての永久磁石で得ている点にある。その永久磁石の 磁場分布は、NIRS-ECRで得られたC⁴⁺生成に最適な 磁場分布を再現するような設計がされている。必要 な磁場を全てに永久磁石で得ていることから、従来 必要であった電磁石電源や冷却機構が全く不要とな るため、大幅な製作コスト及び維持費削減に繋がっ ている。また運転においては調整パラメータが少な く、且つ安定であるため、医療用加速器のイオン源 として多くの魅力的特徴を有する^[2]。

図8 高効率小型入射器とHIMAC入射器の全長比較

写真1 高効率小型入射器とHIMAC入射器の一部

表1 NIRS-KISとNIRS-ECRの比較

比較項目	NIRS-KIS	NIRS-ECR
設置面積	2.0m ²	36.6m ²
加速ギャップ	無し	有り(24kV)
引き出し電源(供給時)	30kV	24kV
ミラー電磁石 材料	永久磁石	電磁石
絶縁トランス容量	3kVA	125kVA
末端ビーム強度(安定時)	390µA	600µA

写真2 NIRS-KISイオン源

次に4ベイン構造を持つ小型RFQ線形加速器を写 真3に示す。表2に示すとおり、小型化のため比較 的高い200 MHzの共振周波数が選ばれた。RFQの入 射エネルギーは共振器の小型化と、イオン源強度の バランスから8kev/uが選ばれた。NIRS-KISからRFQ まで加速ギャップを設けないことから、NIRS-KIS の引き出し電圧は30Kvである。一方、出射エネル ギーは共振器を一体のタンク構造となるように全長 を約2.5m以内とし、その結果、608 keV/uに決定さ れた。^[3]。

表2 小型RFQ線形加速器とIH型DTLの仕様

仕様項目	小型 RFQ 線形加速 器	IH 型 DTL
入射エネルギー	10keV/u	608keV/u
出射エネルギー	608keV/u	4.0MeV/u
共振周波数	200MHz	200MHz
質量電荷比	1/1~1/3	1/1~1/3
共振器全長	2.5m	3.4m
共振器直径	0.42m	0.44m
所要電力	120kW	360kW

写真3 小型RFQ線形加速器

最後にAPF方式IH型DTLを写真4に示す。入射エ ネルギーは表2で示す通り、RFQの取り出しエネル ギーと等しく608 keV/uである。一方、取り出しエ ネルギーは、共振器の小型化と4価炭素ビームが炭 素フォイルを通過する際に6価に荷電変換される荷 電変換効率が9割以上となる要素の兼ね合いから4.0 MeV/uに決定された。その結果、共振器の全長は 3.4mとなった^[3]。

写真4 APF方式IH型DTL

3.3 現在までの移設状況と今後のスケジュール 移設状況と今後のスケジュールを表4に示す。

2007 年春	高効率小型入射器移設検討開始
2008年3月	RFQ・IH 型 DTL 移設(RF 系真空引き開始)
2008年8月	2 階プラットホーム据付
	RF 系アンプの設置
	受電・冷却水・制御の接続と RF 通電・調整開始
2009年3月	イオン源・低エネライン据付と制御組込み
	イオン源・低エネライン電源・制御接続と制御組込
2009年8月	<i>7</i> ,
	ビーム出し試験開始(IH 型 DTL 出口まで)
2010年3月	出射ラインの据付、電源・制御組込み
2010年8月	制御計算機設置とローカル接続予定
	グローバルインターロック総合試験予定
2010 年 10 月	施設検査予定
2011年3月	HIMAC MEBT ラインへの接続予定
	既存上位計算機システムへの組込みと動作試験予定
2011年4月	総合ビーム試験開始予定

表4 移設状況と今後のスケジュール

2007年度より高効率小型入射器移設の検討を開始 し、2008年3月には2台の線形加速器(RFQ、IH型 DTL)の設置、2008年8月にはRFアンプ、受電ライン、 冷却水の接続、2009年8月にはイオン源(NIRS-KIS) と低エネライン(CLBT)、2010年3月には出射ライン (CMBT)の設置と機器の接続を現在まで終了した。

今後の予定として、上位ソフトウェアに関しては 2010年8月に図9のように高効率小型入射機器を遠 隔より制御させる為、新規に制御用PCとしてGCU3 を設置する予定である。また、2011年3月にはその GCU3をHIMAC入射器上位計算機システムに組込み、 HIMAC機器制御用のGCU1、GCU2とリンクさせ、 最終的にはオペレーション用PCから制御を可能と させる予定である。 ハードウェアに関しては、2011年3月に図10の ようにHIMACのMEBTラインと高効率小型入射器の CMBTラインとを接続する予定である。 組込み終了後はいよいよ本格的なビーム調整に入り、

治療コースへの供給を目指す事となる。

図9 HIMAC入射器上位計算機システム構成図

図10 MEBT_B2とCMBTライン接続レイアウト

4. まとめ

HIMACでは、今後も安定したビーム供給を目指 すべく、既存装置に対する維持の強化を行っていく のと同時に、新しいイオン種の加速と更なる安定且 つ安全な装置を目指し、高効率小型入射器の整備を 進めていく予定である。

参考文献

[1]W.Takasugi "MIVOC method with temperature control" 2010 American Institute of Physics.

[2]M.Muramatsu "Development of Compact Electron Cyclotron Resonance Ion Source with Permanent Magnets for High-energy Carbon-ion Therapy"17th International Conference on Ion Implantation Technology (2008)

[3]Y.Iwata "Performance of a compact injector for heavy-ion medical accelerators"Nuclear Instruments and Methods in Physics Research A 572 (2007) 1007-1021