DEVELOPMENT OF THE COMPACT SOURCE OF MONOCHROMATIC

COHERENT X-RAY FOR CANCER MEDICAL TREATMENT

Isamu Sato^{A)}, Kzutaka Shintomi^{A)}, Hiroki Nagase^{A)}, Noboru Fukuda^{A)}, Ken Hayakawa^{B)}, Toshirari Tanaka^{B)}, Yasushi Hayakawa^{B)}, Keisuke Nakao^{B)}, Yumiko Takahashi^{B)}, Takao Kuwada^{B)}, Kyoko Nogami^{B)}, Manabu Inagaki^{B)}, Koichi Ishikawa^{C)}, Motoichirou Takahashi^{C)}, Katsumi Abe^{C)}, Tsutomu Saito^{C)}, Shigeki Fukuda^{D)}, Atsushi Enomoto^{D)}, Satoshi Ohsawa^{D)}, Takayuki Tomaru^{D)}, Mitsuhiro Yoshida^{D)}, Hiroshi Iwase^{D)}, Toshikazu Takatomi^{D)}, Kenji Yajima^{E)}

^{A)}Advanced Research Institute for the Science and Humanity, Nihon University,

2-1 Kudan-kita 4-chome, Chiyoda-ku, Tokyo, 102-0073, Japan

^{B)} Institute of Quantum Science, Nihon University,7-24-1 Narashinodai, Funahashi-shi, Chiba-ken, 274-0063 Japan

^{C)} School of Medicine, Nihon University, 30-1 Ohyakchi-Kamimachi, Itabashi-ku, Tokyo, 173-0032 Japan

^{D)} Inter-University Research Institute Corporation High Energy Accelerator Research Organization,

1-1 Oho, Tsukuba-shi, Ibaragi-ken, 305-0801 Japan

^{E)} Mitsubishi Materials Co, 1-5-1 Ohtemachi, Chiyodaku, Tokyo 100-8117, Japan

Abstract

The monochromatic coherent X-rays are generated from single crystal irradiated by 100MeV electron beam in Nihon University. The excellent X-ray generator enables new cancer medical treatment and diagnosis. The development of compact X-ray generator based on the electron cryo-linear accelerator has been studied in collaboration with Nihon University, High Energy Accelerator Research Organization and Mitsubishi-Materials. The miniaturization is also advanced based on the electron linear accelerator. The test cavity cave designed in the C band $2\pi/3$ mode was manufactured with super-high purity copper (RRR-6000). This cavity was cooled to 20K and the temperature dependency of that Q value was measured. The phenomenon of the anomalous skin effect was observed in this measurement. The electron cryo-linear accelerator was also designed using this measurement data. As a result, the characteristic of the linear accelerator suggested that an energy recovery system could be realized.

がん治療用コンパクト空間干渉単色X線源の開発

1. はじめに

日本大学では、KEKと共同で電子リニアックの高度化 研究を進め、普通の電子リニアックを使って短波長自由電 子レーザー発振とパラメトリックX線放射(PXR)の開 発を試みた。2000年4月に、電子線利用研究施設(L EBRA)は私立大学学術高度化の研究拠点に選定され、

「可変波長高輝度単色光源の高度利用に関する研究」が私 立大学学術研究高度化推進事業 (学術フロンティア) に採 択され、FELやPXRの共同利用実験を推進することに なった。2001年5月に、FELは1.5µm発振に成 功、2003年10月、可変波長FELとしては世界最短 波長発振領域(800~6000nm)を担う、世界最大 のFEL実験施設(ビームライン9本)が完成し、共同利 用実験を開始した。更に、可変波長の単色X線源の開発を 進め、2004年4月、共同利用実験が可能な世界最初の PXRの実用化に成功した。また、PXRはブラック条件 を満たす方位に対してX線エネルギーが一次関数的に僅 かに変化する準単色X線源^[1]であることを示し、更に、 動植物のイメージング映像^[2、3]からブラック条件を満た す方向に放射されるX線波束は空間コヒーレンスに富む X線(位相の揃ったX線)、即ち、PXRが空間干渉X線 源であることを明らかにした。一方、イメージング撮像に 要するX線照射の実時間が非常に短いことから、PXRは 高輝度X線源であることを示めした。

現在、100MeVの電子ビームでSi単結晶(111) 並びに(220)を照射すると、4~34keVのエネル ギー可変範囲の空間干渉単色X線が得られ、これらのX線 は共同利用実験に供与している。

空間干渉性X線源の進展は、最近であり、PXRの干渉 性の特性を活用して、X線を集束すると、X線の3次元照 射が可能になり、これは、X線やγ線などの放射線治療に おける理想的な定位照射である1個の単色放射線を4π 方向(全立体角)から同時に照射することに、一歩近づい たことを意味する。また、この特性は、ハドロン粒子など のブラックピーク特性を凌駕する可能性を示唆している。 また、ガンなどの腫瘍に集合する分子標的物質にX線共 鳴吸収特性を有する物質を含有させ、単色X線照射によ る腫瘍などの軟組織のX線映像を立体画像として構築し、 ガン腫瘍の治療と診断を同時に行うことが可能となる。 これは、PET、CT、MRI、重粒子線治療の特長を兼ね備 えた、全く新たな放射線ガン治療、医療診断が実現する 可能性を示唆している。

2. 各種放射線の線量損失評価

運動エネルギーと質量の大きい荷電粒子は運動量が大 きいために、水などの軽元素中を通過の当初は、物質との 相互作用する確率が小さく、また散乱の影響も小さく、電 離損失もほぼ一定である。しかし、通過距離が長くなると 電離損失などで運動エネルギーを失い、速度が低減し急激 に電離損失エネルギーが増大する。これが、陽子線や炭素 線に特徴的なブラックピークである。そこで、PHITS とEGS5の計算コートを使って、深さ100mmの水中 でエネルギー損失が最大になるように炭素線と陽子線の 入射エネルギーを調整したエネルギー損失分布と3次元 照射40keV単色X線のエネルギー損失分布を計算、その 結果^[4]を図1に示す。

量損失分布

炭素線及び陽子線の一次元的照射と40keV単色X線 3次元照射のエネルギー損失量を比較規格化した単位体 積当たりのエネルギー損失分布の計算結果を図2に示す。 単位体積当たりの規格化エネルギー損失は、220MeV の炭素粒子1個に対して、117MeVの陽子粒子は20 個、40keV単色X線は5個に相当している。このこと から、40keV単色X線の3次元照射は、生体表面から 患部近くまで正常細胞に与える放射線損失が非常に少な いことがわかる。

また、生体軟組織の被爆線量が水の被爆線量に相当する と仮定すると、40keV単色X線の3次元照射は陽子線 や炭素線の放射線治療より卓越した治療効果が得られる 可能性を示唆している。

各種放射線の総合比較の参考資料として、白色γ線、中 性子、白色X線、40keV単色X線、陽子、炭素線の1 次元的照射による生体内線量分布に、40keV単色X線 3次元照射に於けるモンテカルロシミュレーション計算 による相対線量損失(%)を対数で表した図を図3に示す。

各種放射線の水中相対線量(%)

図3 水中の各種放射線の1 次元照射、並びに40k eV単色X線3次元照射の規格化線量損失分布

がん組織の大きさに合わせて、40keV単色X線の3 次元照射を前後にシフトさせてプラットトップの形成を 試みた結果は、がん組織と正常細胞の被爆線量比を5程度 確保できることが分かった。

3. エネルギー回収型クライオ電子リニアック

当初は、エネルギー回収システムに超伝導電子リニアッ クを予定していた。即ち、超伝導加速管を用いて電子ビー ムを加速し、図4に示すように、用途を終えた電子ビーム を再び加速管の減速位相に入射して電子ビームを減速さ せながら、電子ビームからエネルギーを高周波電力として 回収する。 超伝導加速空洞は高電界にすると電界放出電 子が大量に発生し、加速空洞の超伝導状態が壊れるために、 高電界加速の上限は自ずと制限される。現在、25MeV /mが実用的な限界であり、100MeV級の加速システ ムの長さは5mを超える。これは加速装置のコンパクト化 を制約する。そこで、超伝導電子リニアックと同様にエネ ルギーが回収できるコンパクトな加速システムの探究を 開始した。最初は、無酸素銅材(RRR-30相当)で製 作されたSバンド(2856MHz)の加速管の加減速特 性を、図4に示すようなモデルを使って検討した。しかし、 無酸素銅を20Kの低温に冷却しても、エネルギー回収は、

図4 エネルギー回収型の高周波環流加速システムの 概念図

無理なことが判った。次に、RRR-1000, RRR-30 00、RRR-6000などの色々な銅材の加速管で閉回路を構 成し、液体水素温度に冷却した場合、閉回路の加減速特性がどの ように変化するかを検討した。また、加速電界強度を高める ため、加速周波数をSバンド(2856MHz)からCバ ンド(5716MHz)に変え、加速空洞構造の最適化を 選択し、20Kに冷却した場合の加速特性を求めた。計算 結果では、エネルギー回収が可能で卓上型クライオ電子リ ニアックが実現可能であることを示唆した。しかし、マイ クロ波領域では、異常表皮効果による加速性能低下が予測 され、RRR-6000でテスト空洞を製作し、テスト空 洞の高周波損失の温度依存性を測定することになった。

テスト空洞は、図5に示すように、Cバンド2π/3 モードの3空洞構造で設計され、拡散接合方法で作成^[5] された。

図5 拡散接合で製作したCバンド2π/3モードテスト 空洞

テスト空洞のQ₁の温度依存性^[6]は、図6に示すように、 10~20Kの温度範囲では、ほぼ一定であり、その平均 は $Q_1 = 33618$ であった。また、20K~300Kの 温度範囲では、Q₁値が大きく低減した。常温(300K) の平均 Q_L 値は、 $Q_L = 6174$ であった。

テスト空洞QLの温度依存性

図6 テスト空洞の高周波損失係数Q₁の温度依存性

高純度銅材(7N:RRR-6000)の直流抵抗を 基準とする比抵抗 ρ は、常温で $\rho = 1.72 \times 10^{-8} \Omega/$ m、20Kで ρ =9.5×10⁻¹²Ω/mである。

もし、異常表皮効果がないと仮定し、20Kに冷却し たテスト空洞の無負荷利益係数: Q₀は、表皮の深さδで 計算すると、Q。=367000となる。しかし、テスト 空洞の負荷利益係数QLの実測値は、QL=33858で あった。計算値の Q_0 と実測値の Q_L の大きな差は、異常 表皮効果によるものと推定される。

高純度銅に応力歪みがなく、Q」とQの測定に大きな 誤差がない場合、C バンドテスト加速空洞の測定結果から、 RRR-6000を20Kに冷却した場合、異常表皮効 果を考慮した5.739GHzに於ける高周波抵抗成分 は、直流抵抗に換算してRRR-61以上であると推定 される。ここでは、テスト空洞のQ_LとQ₀の比が0.9、 RRR-6000がRRR-66に相当すると仮定し、 これを基準にして、クライオ電子リニアックのCバンド 加速管をDDCコード^[7]を使って再設計した。

長さ約50cmのCバンド加速管2本を1対とする加 減速ができる閉回路システムを20Kに冷却し、閉回路 に22.5MWの高周波電力を環流させ、0.2Aの電子 ビームを供給すると、図7に示すように、電子ビームは

約25MeVに加速できる。この電子ビームで単結晶を 照射し、約50cmの減速管に輸送して電子ビームを減 速すると、約19.5MWの高周波電力を回収でき、これ を加速管に還流し再利用ができる。図4に示すような閉 回路では、加速管入力空洞に供給される高周波電力と減 速管終端の出力空洞から回収する高周波電力の差が加減 速管で消費された高周波電力を意味する。閉回路では、 加速ビーム電流が増加すると、閉回路の消費電力も低減 される。この加速システムでは、加速管と減速管を1セ ットにした閉回路に小電力高周波電力を積み上げ、大電 力が還流する状態にしてから、閉回路の加速管に電子ビ ームを入射することになる。電子ビームが加速管に入射 すると、高周波電力が電子ビームエネルギーに変換され 加速管終端で電子ビームのエネルギーは最大になり高周

波電力は最小になる (図7の左半分を参照)。

図7 Cバンドクライオ電子リニアックの加減速特性

この加速システムで、電子ビームを100MeVに加 速するには、閉回路を4セット直列に接合する必要があ る。また、閉回路に22.5MWを積み上げには、加減速 管で消費する高周波電力より多い電力を高周波源(クラ イストロン)から方向性結合器を通して供給することに なる。閉回路を還流する高周波電力が短時間で定常状態 (22.5MW)になるには、高周波源から大電力を閉回 路に供給し、閉回路が所定電力(22.5MW)に達した 時点で、高周波源からの供給電力を閉回路の消費電力に 低減する。従って、高周波電力が閉回路を短い時間で周 回し、クライストロン出力電力の変調比が大きくするこ とが重要になる。閉回路を4段に並べた最もシンプルな テーブルトップ電子リニアックをベースに、コンパクト なコヒーレント単色X線源のモデルを基盤とする具体的 な構成図を図8に示す。

エネルギー回収型電子リニアックの必要性のもう一つ の理由は、単結晶を通り抜けた電子ビームのエネルギー

を再び高周波電力に変換して、高周波電力を電子リニア ックの加速に再利用することにより、放射線遮蔽を軽減 することにある。また、照射用単結晶から放射される y 線や中性子の線量は非常に少ないので、治療室に直接X 線発生装置を持ち込める可能性が高く、使い勝手は非常 によくなる。

図9には、X線発生装置を含むクライオ電子リニアッ クのブロック配置図の凡例を示す。また、図9には冷却 装置と高周波パルス電源を除いた加速器とX線発生装置 の主要な装置は含まれており、電子リニアック本体は4. 0×1.5m²の面積に収まり、テーブルトップ型コレー レントX線源が実現する可能性を示唆している。

表1には、10¹¹/秒個を目標したX線発生装置を含 むテーブルトップ型クライオ電子リニアックのパラメー ターの凡例を示す。

++ + HO.0-)

<u>表1 クライオ電子リニ</u>	ドックのハフメーター
クライオ加速システム	エネルギー回復方式
冷却温度	-253°C
冷却保全	クライオスタット
加速管素材	RRR - 6000
電子銃	熱陰極3極管
電子銃電圧	-150 k V
最大ビーム電流	1.5A
規格化エミッタンス	<5πmm·mrad
入射ビームエネルギー	2.5 MeV
マクロパルスビーム電流	0.2 \sim 1.0A
加速周波数	5.712 GHz
加速モード	2π/3進行波環流
加減速管空洞数	$29 \sim 30$
加速管の全長	$1\ 0\ 1\ 4 imes 4$ mm
環流周回時間	500ns
加速エネルギー	$1 \ 0 \ 1 \sim 7 \ 4.4 \mathrm{MeV}$
高周波電力	22.5×4 MW
高周波尖頭電力損失	1.1×4 MW
ジュール損失(平均)	$\sim 880 \mathrm{W}$
高周波電力負荷率	$2 \times 1 \ 0^{-4}$
平均ビーム電力	2.9 \sim 20.2 kW
平均ビーム電流	$4~0\sim 2~0~0~\mu$ A
X線の全線束数	\sim 1 0 ¹¹ /S
パルス持続時間	$10 \ \mu \ \mathrm{s} imes 10 \ \mathrm{pps}$
高周波源クライストロン	出力変調型
尖頭高周波出力電力	$3\sim 30\mathrm{MW}$
平均高周波出力電力	$1~2~\mathrm{kW}$
パルス雷源	3 0 k W

図8 クライオ・電子リニアックの構成図

図9 クライオ・電子リニアックのブロック配置図

4. おわりに

空間干渉単色X線源によるガン治療・診断の接点は始 まったばかりであり、放射線、医学物理、生命科学、加 速器などに係わる多くの研究者や技術者の力を結集し、 これから派生する諸問題と真摯に対峙することが重要で あり、政府による真摯な対応に期待を寄せている。γナ イフ、サイバーナイフ、或いはブラックピーク特性を活 用した粒子線など高尚な定位照射には、それぞれ特長が あり、単純に優劣を比較することは難しいが、ここで、 理想的な定位照射とは何かを、もう一度衆智を集めて、 詳細に検討する時期に来ていると思われる。一方、クラ イオ電子リニアックは、異常表皮効果に対峙した、これ までの加速器の常識に対する新たな加速器への挑戦でも あり、加速管の素材、環境、構造を融合させ複合的に検 討しない限り、決して成し得ない代物であったことを、 一言申し添える。

Reference

[1] Y. Hayakawa, et al., Phys. Soc. Jpn. 67 (1998) 1044.

[2] Y. Hayakawa, et al., Nucl. Instr. and Meth. B227 (2005) 32
[3] T. Kuwada, et al., "Phase Contrast Imaging of Biological Materials Using LEBRA-PXR", SRI2006 The 9th Inter. Conf. on Synchrotron Radiation, May 28-June, 2006 Daegu, Korea.

[4] KEKの波戸、岩瀬の両氏と情報交換

- [5] KEKの高畠氏との情報交換
- [6] KEKの吉田氏との情報交換.

[7] Masao NAKAMURA, "A Computational Method for Disk Loaded Waveguides with Rounded Disk- Hole Edges" JJAP,Vol.7,No.3, (1968) p257-271.