MAGNETIC FIELD MEASUREMENT OF THE SUPERCONDUCTING MANGET FOR ROTATING-GANTRY

Shigeki Takayama^{#,A)}, Tomofumi Orikasa^{A)}, Shohei Takami^{A)}, Ikuo Watanabe^{A)}, Yoshiyuki Iwata^{B)}, Koji Noda^{B)},

Toshiyuki Shirai^{B)}, Takuji Furukawa^{B)}

^{A)} Toshiba Corporation

2-4, Suehiro-Cho, Tsurumi-Ku, Yokohama, 230-0045, Japan

^{B)} National Institute of Radiological Sciences (NIRS)

4-9-1, Anagawa, Inage, Chiba, 263-8555, Japan

Abstract

We have been developing a superconducting rotating-gantry for heavy-ion therapy. This isocentric rotating-gantry can transport heavy ions to the isocenter with irradiation angles over 0-360 degrees. Ten combined-function superconducting magnets are employed for the rotating-gantry and two of them had been manufactured. The magnetic field of the superconducting magnets was measured. Results of the measurements and calculation are presented.

回転ガントリー用超電導電磁石における磁場測定

1. はじめに

現在、我々は重粒子線がん治療装置用超電導回転 ガントリーを開発している。本がん治療装置では医 療用重イオン加速器(HIMAC)から出力される最大エ ネルギー430 MeV/u の重粒子線をがんにラスタース キャニング照射することで治療しており、照射の際 に回転ガントリーを用いることでアイソセンターへ の照射角を0度から360度まで連続的に設定するこ とが可能となる。また、二極成分と四極成分を独立 に制御可能な 10 台の機能結合型超電導電磁石を本 回転ガントリーに用いることで、陽子線用回転ガン トリーと同程度の軸長約13m、回転半径約5.5mま で小型化することが可能となった。今回、二台の機 能結合型超電導電磁石が製作完了し、空芯コイルの 状態での磁場分布測定を常温下で行った。本稿では、 ビームダクト内部の磁場分布測定結果および、測定 値と解析値との比較に関して報告する。

2. ガントリーレイアウト

超電導回転ガントリーの鳥瞰図を図 1 に示す。 HIMAC より得られる重粒子線は回転ガントリー本 体に設置されている機能結合型超電導電磁石によっ て輸送され、ロボットアーム治療台上の患者へ照射 される。図 2 に回転ガントリーのレイアウトを示す。 ビームラインは 10 台の機能結合型超電導電磁石 (BM01~BM10)の他に 2 対のステアリング電磁石 (STX002、STY002、STX003、STY003)、および水 平・垂直スキャニング電磁石(SCMX-001、SCMY-001)で構成されている。各機器は円筒構造の回転構 造体に固定されており、本構造体を 360 度回転させ ることで患者に対し 0 度から 360 度のあらゆる角度 から重粒子線を照射することが可能となっている。 前述の機能結合型超電導電磁石の基本諸元を表 1 に示す。スキャニング電磁石上流に偏向半径 2.3 m の超電導電磁石を 6 台(BM01~BM06)、下流に偏向 半径 2.8 m の超電導電磁石を 4 台(BM07~BM10)配 置しており、スキャニング電磁石によって走査され た重粒子線を偏向するために、スキャニング電磁石 下流の超電導電磁石ではビームダクト径を大きくし ている。アイソセンターに最も近い超電導電磁石 (BM10)では照射領域 200 mm×200 mm を確保する ためにビームダクトが約 ϕ 300 mm の大口径となっ ている。走査された重粒子線はアイソセンター直前 の二台の超電導電磁石(BM09/BM10)の四極成分と二 極成分のラディアルフォーカスによって整形され、 照射領域に対し垂直に照射されると共に、正方形の 照射領域を確保している。

図1:超電導回転ガントリー鳥瞰図

[#] shigeki2.takayama@toshiba.co.jp

図2:超電導回転ガントリーレイアウト

衣 I: 熾 肥 給 合 空 砲 竜 导 竜 幽 句 り

パラメータ	単位	BM01/BM06	BM02~BM05	BM07	BM08	BM09/BM10
偏向角	deg.	18	26	22.5	22.5	22.5
偏向半径	m	2.3	2.3	2.8	2.8	2.8
ビームダクト内径	mm	60	60	170	240	290
有効磁場領域	mm	± 20	± 20	± 60	± 80	± 100
最大二極磁場	Т	2.88	2.88	2.37	2.37	2.37
最大四極磁場勾配	T/m	9.10	9.10	-	-	0.74
鉄心内径/外径	mm	208/500	208/500	300/700	386/860	460/1000
真空容器内径/外径	mm	760/790	760/790	978/1010	1158/1190	1278/1310

3. 超電導電磁石磁場設計

正確に重粒子線を照射するために、スキャニン グ電磁石上流の超電導電磁石 (BM01~BM06)では 磁場均一度±1.0×10⁻³以下、スキャニング電磁石 下流の超電導電磁石 (BM07~BM10)では磁場均一 度±1.0×10⁻⁴ 以下を目標としている。本電磁石は ビームダクトに沿って湾曲した複雑なコイル形状 であり、各電磁石の鉄心や導体配置の設計は二次 元導体配置最適化プログラム^[1]と Opera-3dTMによる 三次元非線形磁場解析^[2]を用いた^[3]。ここでは機能 結合型超電導電磁石(BM02~BM05)における二次元 断面導体配置および鉄心構成を図3に示す。ビー ム光学設計より、有効磁場領域を±20 mm、ビーム ダクト内径を 60 mm としており、ビームダクトの 外周に超電導コイルを配置、さらにコイルを囲う ように鉄心 (珪素鋼板)、真空容器(構造材用炭素鋼) を配置した。超電導コイルはコサインシータ巻構 造を持ち、内側に配置された8層からなる四極コ

イルとその外側に配置された 26 層からなる二極コ イルで構成されている。各コイルは独立に励磁可 能で、各層で導体位置の最適化が行われている。 また、磁石を湾曲形状にしたことやコイルエンド などに起因する多極成分は最外層の線材配置で補 正している。最終的に得られた二極コイルの作る 定格通電時の磁場均一度マップを図4に示す。x は 偏向半径方向、z は偏向面垂直方向を表し、垂直磁 場(B_z)をビーム方向に積分した値(B_zL 積)の均一度 ($\Delta B_zL/B_zL$)を示している。有効磁場領域(±20 mm)においてこの均一度は最大でも 1.48×10⁴ と 目標値である±1.0×10⁻³以下に収まっている。

同様の手法で超電導電磁石(BM10)においても磁 場設計を行っている。最終的に得られた二極コイ ルの作る定格通電時の磁場均一度マップを図 5 に 示す。本電磁石の磁場均一度目標値は±1.0×10⁴ であり、有効磁場領域(±100 mm)の広い範囲で 目標が達成されている。

図3:超電導電磁石断面図

図4:ビーム軌道での垂直 B_zL 積均一度(BM04)

図 5: ビーム軌道での垂直 B_zL 積均一度(BM10)

4. 超電導コイル製作

今回、機能結合型超電導電磁石 BM04、および、 BM10 の二台を製作した。ここでは BM04 の超電導 コイルの外観を図 6 に示す。磁場設計で得られた 線材配置を巻線で高精度に実現するために、コイ ル製作はサーフェスワインディング法を用いた。 本巻線方法は複雑な三次元鞍型コイルを巻線する のに有効である。

スキャニング電磁石上流の超電導電磁石 (BM01 ~BM06)では3台、スキャニング電磁石下流の超電 導電磁石 (BM07~BM10)では4台の冷凍機を用い、 熱伝導でコイルを冷却するが、ラスタースキャニ ング照射では80 MeV/u ~430 MeV/uのエネルギー の異なる重粒子線を照射するため、エネルギーに 応じて高速に磁場を変化させる必要があり、磁場 変化に起因して超電導線材に交流損失(発熱)が発生 してしまう。そのため交流損失の小さい極細多芯 NbTi 超電導線材を採用するなどの対策をとって発 熱を抑制している。

図 6: 超電導コイル外観(BM04)

5. 磁場測定

磁場測定装置の外観を図7に示す。本磁場測定 装置はビームダクトの形状に沿った形でレールを 配置し、その上に複数のホール素子を搭載した台 車を走査することで各断面での磁場を測定した。

ここでは鉄心を組み立てる前に常温下で励磁した結果を示す。今回製作した機能結合型超電導電磁石(BM04、BM10)のうち、BM04の二極コイルを0.175 A(定格 136 A)励磁した際のビーム軌道に沿った垂直磁場(B_z)分布を図 8 に示す。図 9 は同じ測定結果の磁場範囲を拡大したものである。断面内の磁場分布については、ビーム軌道中心とミッドプレーン上で偏向半径方向±10 mm および±20 mm の位置において測定した。図中の実線は励磁電流を 0.1715A としたときの解析値であり、これと測定値とで磁場強度が良く一致することを確認した。また本測定結果をビーム軌道に沿って積分した B_zL 積均一度のミッドプレーン上での分布を図 10 に示す。解析値と測定値との差は最大でも 5.6×

10⁴となった。本測定装置の測定精度が 1.0×10³で あることから磁場設計で得た線材配置を精度良く 実現していることが分かる。

BM10 においても同様の測定を実施している。 BM10 二極コイルを 0.350 A(定格 231 A)で励磁し、 その際のビーム軌道に沿った垂直磁場 (B_z) 分布 を図 11 に、拡大図を図 12 に示す。断面内の磁場 分布については、ビーム軌道中心とミッドプレー ン上で偏向半径方向±25 mm および±50 mm の位 置において測定した。図中の実線は励磁電流を 0.348 A としたときの解析値であり、BM04 と同様、 解析値と測定値とで磁場強度が良く一致すること を確認した。また本測定結果をビーム軌道に沿っ て積分した B_zL 積均一度のミッドプレーン上での 分布を図 13 に示す。こちらは解析値と測定値との 差が最大でも 8.0×10^4 となり、こちらに関しても 磁場設計で得た線材配置を精度良く実現している。

図7:磁場測定装置コイル取り付け時外観

図8:ビーム軌道に沿った二極磁場分布

図9:ビーム軌道に沿った二極磁場分布(拡大)

図 10:二極コイル励磁時の垂直 B,L 積均一度

図 11: ビーム軌道に沿った二極磁場分布

図 12: ビーム軌道に沿った二極磁場分布(拡大)

図 13:二極コイル励磁時の垂直 BzL 積均一度

6. 超電導電磁石の製作

製作した機能結合型超電導電磁石(BM04、BM10) のうち、BM04 の超電導電磁石外観を図 14 に示す。 鉄心も冷凍機を用いて伝導で冷却しているが、 ラスタースキャニング照射のための高速な磁場変 化に起因してコイルと同様、交流損失(発熱)を発生 してしまう。そのため、積層珪素鋼板を使用する などの対策を行うことでこの発熱を抑制している。

本超電導電磁石は回転構造体に固定され 360 度 回転する。そのため全方向の荷重に対応する GFRP 製のサポートを採用した。このサポートは冷却に よる熱収縮時も超電導コイルの変位は小さく、0 度 ~360 度まで回転させて配置した場合においてもコ イルの変位が±0.3 mm 以内となっており、回転に よる磁場分布の変化は十分に小さい。

図 14:機能結合型超電導電磁石(BM04)外観

7. まとめ

重粒子線がん治療装置用超電導回転ガントリー に搭載される機能結合型超電導電磁石の一部(BM04、 BM10)が製作完了したため、空芯コイルの状態での 磁場分布測定を常温下で行った。その結果、BM04 における B₂L 積均一度の測定値と解析値との差は 最大でも 5.6×10⁴、BM10 における B₂L 積均一度の 測定値と解析値との差は最大でも 8.0×10⁴ となり、 測定精度(1.0×10³)内で測定値と解析値が一致し ていることから、磁場設計で得た線材配置を精度 良く実現していることが明らかとなった。超電導 電磁石の組み立てが完了しているため、現在、鉄 心等と組み合わせた詳細な磁場分布の測定を行っ ている。

参考文献

- T. Obana, *et al.*, IEEE Trans. on Appl. Supercond., vol. 15, no. 2, pp. 1185-1188, June 2005.
- [2] Opera-3d Version 15, http://cobham.com/.
- [3] Y.Iwata, *et al.*, Phys. Rev. ST Accel. Beams 15, 044701 (2012).