NewSUBARU Polarized Gamma-ray Source

S.Miyamoto^{*,A)}, S.Amano^{A)}, S.Hashimoto^{A)}, Y.Kitagawa^{A)}, K.Kawata^{A)}, A.Koizumi^{B)}, T.Hasegawa^{B)}, T.Sekioka^{C)}

H.Utsunomiya^{D)}, T.Yamagata^{D)}, H.Akimune^{D)}, T.Hayakawa^{E)}, T.Shizuma^{E)}, H.Harada^{E)}, F.Kitatani^{E)}

T.Shima^{F)}, H.Ohkuma^{G)}, Y.Hamada^{G)}, Y.Asano^{H)}, K.Imasaki^{I)}, D.Bernard^{J)}

A)Laboratory of Advanced Science and Technology for Industry, University of Hyogo

^{B)}Graduate School of Material Science, University of Hyogo, 3-1-2 Kouto, Kamigori-cho, Ako-gun, Hyogo, 678-1205

^{C)}Graduate School of Engineering, University of Hyogo, 2167 Syosya, Himeji-city, Hyogo, 671-2201

^{D)} Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe, Hyogo 658-8501

^{E)}Japan Atomic Energy Agency, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195

F) Research Center of Nuclear Physics, Osaka University, 10-1 Mihogaoka, Ibaragi-shi, Osaka 567-0047

^{G)} Japan Synchrotron Radiation Research Institute

H) RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198

¹⁾ Institute for Laser Technology, 2-6 Yamadaoka, Suita, Osaka 565-0871

^{J)} Ecole Polytechnique, Laboratoire Leprince-Ringuet, F-91128 Palaiseau, France

Abstract

Laser Compton scattering gamma-ray beam source was developed on BL01 of NewSUBARU synchrotron radiation facility. The gamma-ray beams were used for application experiments, a nuclear physics research, a nondestructive inspection of thick material, a magnet Compton scattering measurements, and nuclear transmutation research. Recently, new gamma-ray irradiation hutch was added to expand experimental area. Permission of radiation safety control for new hutch has been approved. In new hutch, gamma-ray photon energy of up to 76 MeV is available. Expected flux of quasi-monochromatic gamma-ray (16.7MeV, $\Delta E/E \sim 7.5\%$) is $6x10^5 \gamma/s$ using 10W Nd laser and 250 mA electron current. User application of this gamma-ray source will be started this fall.

ニュースバル偏光ガンマ線ビームライン

1. はじめに

兵庫県立大学ニュースバル(NewSUBARU)放射光施設^[1]では、放射光利用研究と並行して、2005年度より専用ガンマ線ビームライン^[2]を用いてレーザ・コンプトン散乱ガンマ線の発生試験と利用実験を行なってきた^[3-13]。放射光施設の運転・利用と同時に、1MeVから40MeVの準単色ガンマ線を安定に発生・利用が可能である。

Table. I にニュースバル電子蓄積リングのパラ メーターを示す。通常運転モードは、電子エネル ギー1.0GeVのTopUpモード(電子エネルギー974 GeV)と、電子蓄積後、電子エネルギーを1.5GeVま で加速する高エネルギー蓄積モード(電子エネル ギー1.47 GeV)が、週間スケジュールされている。

従来のガンマ線照射ハッチ内部の容積が 1.1m^W×1.5m^D×1.65m^Hと狭く、大型の計測機器を使 うことが困難であったため、2012年3月末に、旧 ハッチの後方に新しいガンマ線実験ハッチを追加 した。新ハッチの実験スペースは、 2.4m^W×4.0m^D×2.6m^Hのサイズで、約10倍の実験 ハッチ体積とした。新ハッチでは、放射線遮蔽を 強化し、ガンマ線の最大エネルギーは76MeVまで利 用可能である。また、最大ガンマ線フラックスも 約20倍まで増強できる。

1.0GeVのTopUpモード運転で、Ndレーザ(波長 1µm)を用いる場合、最大エネルギー16.7MeVのレー ザ・コンプトン散乱ガンマ線ビームを発生でき、 レーザパワー10W、電子電流250mAでは、6×10⁵ γ / 秒のフラックスの準単色 (Δ E/E \approx 7.5%) ガンマ 線が期待できる。ガンマ線ビーム利用研究者と協 力して、ガンマ線源の評価とビームラインの改良 を進めて行く予定である。

Table 1 : Parameters of NewSUBARU ring.

Storage energy	0.7 – 1.5 GeV
TopUp operation	1.0 GeV / 250 mA
Circumference	118.731 m
RF frequency	499.955 MHz
Harmonic number	198
ΔE/E (1.0/1.5 GeV)	0.047% / 0.072%
Emittance(1.0/1.5 GeV)	37 nmrad / 67 nmrad

^{*}miyamoto@lasti.u-hyogo.ac.jp

Fig.1. Ditail of gamma-ray beamline BL01A. Old (hutch-1) and new (hutch-2) are shown.

2. ガンマ線ビームライン

Fig.1に、ニュースバル実験ホールの南東部に設置された、レーザ・コンプトン散乱ガンマ線ビームラインBL01Aの配置を示す。電子は左側壁面から、左回りに蓄積される。従来のガンマ線実験ハッチは、加速器収納トンネルに隣接して、コンクリート壁で囲まれた部分で、"Gamma hutch-1"と記載している部分である。この実験ハッチ後方のガンマ線ダンプ(鉛30cm厚)にガンマ線通過孔をあけ、ガンマ線を"Gamma hutch-2"へ直列に通す方式である。ハッチ1は、コリメーターハッチとして利用できる構造である。ハッチ1のみで利用する場合は、ハッチ1のガンマ線ダンプ開口に、可動式エンドプラグを挿入して遮蔽できる。

Fig. 2に旧ガンマ線ハッチと、後方に開けたガン マ線取り出し孔の写真を示す。旧ハッチ横には、 レーザシステム用の定盤を設置している。レーザ は、加速器収納トンネル壁面の開口を通して、ト ンネル内の固定ミラーへ導かれ、集光レンズを介 して、真空ダクト内のミラーにより、電子ビーム との散乱点まで導入される。真空ダクト内のミ ラーは放射光にさらされるため、水冷している。 電子ビームとレーザのアライメントを容易にする ために、レーザ入射の反対側(約30m上流側)の ビームライン(BL01B)からHeNeレーザを導入して、 基準アライメントとしている。LCS用レーザの交換 や波長変換を行った場合は、このHeNeレーザにア ライメントすることで、粗調をおこなう。最終的 には、ガンマ線信号をモニターしながら、ミラー を調整し精密アライメントを行う。

収納トンネル内のLCS用レーザの光学系は、可視 および近赤外用(Ndレーザωおよび2ω)と遠赤 外用(CO₂レーザ)の2系統設置しており、遠赤外 用光学材料は、ZnSeおよび金ミラーを用いてい る。Ndレーザと電子の衝突位置は、長直線部のほ ぼ中央で、集光レンズより13mの位置である^[10]。 CO₂レーザの場合、同じ衝突位置では集光径が大き

Fig.2. Old gamma hutch-1. Extraction hole is shown.

Fig.3. New gamma hutch-2.

くなり、電子ビームとのマッチングが悪いため、 衝突位置を偏向電磁石の直前の位置(集光レンズ から約6m)とした^[6]。

準単色ガンマ線の利用には、直径3mmおよび6mm のコリメーター(鉛製厚さ100mm)を用いる。コリ メーターは、収納トンネル内とハッチ1内に設置 しており、XYステージによりガンマ線光軸とのア ライメント調整ができる。偏極ガンマ線実験行う 場合は、必要に応じてそれぞれの光学系に偏光 子、波長板等を導入する。

Fig. 3に新ガンマ線ハッチ2の外観写真を示す。 ガンマ線ビーム軸方向は、鉛30cm厚さおよびコン クリート40cm厚さのビームダンプを設置してい る。安全インターロックはハッチ入り口のスライ ド・ドアが閉鎖され、施錠されなければメイン・ ビームシャッター(MBS)を開くことができないよう に設定されている。

3. ニュースバル・ガンマ線源の特徴

Table II.にニュースバルガンマ線源のフラックス と光子エネルギーを示す。コリメーターなしの場 合のYieldは、電子電流1mA、レーザ出力1Wで規 格化した値を示している。コリメーターなしの場 合でも、加速器蓄積リングとビームラインの接続 部近傍に、不要な放射光を吸収する「アブソー バー」を設置しているため、散乱角度の大きい、 低エネルギーガンマ線は透過できない。そのため ガンマ線スペクトルは、低エネルギー側がカット されたスペクトルとなる。ガンマ線ハッチで利用 可能なガンマ線光子数は、1.0GeVのTopUp運転 で、電流250mA、レーザ出力10Wの場合、規格化 フラックスの2500倍の光子数となる。

準単色ガンマ線は、鉛コリメーターで後方散乱 ガンマ線のビーム軸成分のみを取り出すことで得 ることができる。Ndレーザの場合、衝突点から約 15.6mに設置したコリメーターにより、 $\Delta E/$ E=10%(6mm ϕ)および<7.5%(3mm ϕ)のエネルギー広 がりの準単色ガンマ線が得られている。

ガンマ線の偏光は、制動輻射ガンマ線や、放射 性同位体からのガンマ線源では発生が困難である が、レーザ・コンプトン散乱では、入射レーザの 偏光をガンマ線が保存するため、散乱角度を制限

Fig.4 Schematic configuration of HHS (Highresolution High-energy photon Spectrometer) detector head.

してやることで、高度に偏光した直線偏光、ある いは円偏光ガンマ線を取り出すことができる。

4. 新ガンマ線ハッチでの実験予定

新ガンマ線ハッチでは、旧ハッチで使うことが できなかった、大型計測器や、新しい測定配置が 可能になる。現在、以下の4つの実験・計測を予 定している。

4-1. γ線スペクトル計測

旧ハッチでは計測器が収納でき無いため測定で きなかった高精度なガンマ線測定。Fig. 4のような HHS^[14](High-resolution High-energy photon Spectrometer)を用いる。これは、体積の大きいGe 検出器(Twin-Ge)の周囲をBGO検出器で取り囲んだ 構造で、Geでコンプトン散乱する信号を除去する ことにより、スペクトル精度計測精度を改善し、 さらに、検出器のスペクトル応答関数を用いて、 正確なガンマ線スペクトルを再構成する。

4-2. ガンマ線直線偏光度計測(1)

ガンマ線の直線偏光度の定量的計測は、ガンマ 線を適当なターゲットに照射し、そこからのコン プトン散乱強度の角度分布を計測して評価するこ とができる。ガンマ線照射ターゲットからのコン プトン散乱ガンマ線のエネルギー E_yScatter は次式で 表される。

Table II. Expected gamma-ray energy and flux of NewSUBARU LCS gamma-ray source.

Parameter /	Lasers	Nd(ω)	$Nd(2 \omega)$	Er	CO ₂			
Laser wavelength λ		1064 nm	532 nm	1540 nm	10590 nm			
Laser power (max) PL		35 W	20 W	4 W	7.5 W			
Gamma-ray energy (no collimator)	Ee= 974 MeV Ee=1470 MeV	5-16.7 MeV 8-37.6 MeV	10-33.4 MeV 15-73 MeV	3.5-11.5 MeV 5-25.7 MeV	0.5-1.7 MeV 0.7-3.9 MeV			
Yield (no collimator)	Ee= 974	6000 γ/s/mA/W	3000 γ/s/mA/W	7000 γ/s/mA/W	7200 γ/s/mA/W			
Gamma-ray energy (3mm¢ collimator)	Ee= 974 MeV	15.4-16.7 MeV	30.5-33.3 MeV	10.6-11.5 MeV	1.57-1.7 MeV			
Yield (3mm¢ collimator)	Ee= 974 MeV I=250 mA	2×10 ⁶ γ/s	6×10 ⁵ γ/s	3×10 ⁵ γ/s	1×10 ⁶ γ/s			

$$E_{\gamma}^{Scatter} = \frac{E_{\gamma}}{1 + E_{\gamma} (1 - \cos \theta) / m_0 c^2}$$

ここで、 E_{γ} は入射ガンマ線の光子エネルギー、 θ は入射ガンマ線進行方向に対して、散乱ガンマ線 の散乱角度。例えば、 $\theta=90^{\circ}$ 散乱では、1.7 MeVの ガンマ線では、 E_{γ} Scatter = 390keVとなる。この手法 は、ガンマ線エネルギーが大きくなると偏光度分 解能は低下する。

4-3. ガンマ線直線偏光度計測(2)

TPC(Time Projection Chamber)内での電子電界 による対生成反応を利用する方法^[15]。反応生成物 (e, e, e+)の飛行角度依存からガンマ線の偏光方向 を評価できる。エコール・ポリテクニークのグ ループが、宇宙ガンマ線用ポラリメーターとして 開発しているTPC (Fig. 5)を用いる。

4-4. 円偏光ガンマ線の計測

円偏光ガンマ線の計測には、磁気コンプトン散 乱の、磁化依存性を利用する予定である。予備試 験で、CO₂レーザによる1.7MeVガンマ線を磁化鉄に 照射し磁気コンプトン散乱成分を測定できること は確認した。この条件では、磁気コンプトン散乱 強度の偏光依存性は4%程度と評価できたため、精 度良い測定には、安定なガンマ線フラックスを用 いた、統計数を増やす計測が必要と考えている。

5. まとめ

NewSUBARUレーザ・コンプトン散乱ガンマ線ビー ムライン(BL01)に新しい実験ハッチを整備し、 1.7MeVから、76MeVの準単色、偏光ガンマ線の利用 実験が用になった。今秋より、高精度ガンマ線ス ペクトル計測と、偏光計測等を実施し、ガンマ線 ビーム特性を評価すると共に、各種利用実験を進 める予定である。

参考文献

- [1] 宮本修治 他, "ニュースバル放射光施設", 本年会プ ロシーディングス, FRLR17(第9回日本加速器学会年 会,大阪大学, 2012.8.8-11).
- [2] S.Miyamoto et al., "Laser Compton back-scattering gamma-ray beam-line on NewSUBARU", Radiation Measurements, 41, pp. S179- S185 (2007).
- [3] T.Hayakawa et al., "Half-life of 184-Re populated by the (γ, n) reaction from laser Compton scattering γ rays at the electron storage ring NewSUBARU", Phys. Rev. C 74,. 065802 (2006).
- [4] 宮本修治「レーザ・コンプトン散乱ガンマ線ビーム ライン - NewSUBARU放射光施設 -」加速器学会誌 「加速器」,5,pp.111-116 (2008).
- [5] 宮本修治 他,「ニュースバルガンマ線源性能と利用 研究」 レーザー学会誌「レーザー研究」,第36巻第 12号, pp. 798-805 (2008).
- [6] S.Amano et al., "Several-MeV γ-ray generation in NewSUBARU by laser Compton backscattering", Nucl.

Fig.5 Illustration of TPC (time projection chamber) gamma-ray polarimeter.

Inst. and Meth. in Phys. Res., A, 602, pp.337-341(2009).

- [7] D.Li et al., "Positron generation through laser Compton scattering gamma ray", Appl. Phys. Lett., 94, 091112, (2009).
- [8] S.Amano et al., "Laser-Compton Gamma-Ray Source at a Beamline (BL1) in NewSUBARU", SRI 2009, 10th International Conference on Synchrotron Radiation Instrumentation. AIP Conference Proceedings, Vol.1234, pp. 495-498 (2010).
- [9] D.Li et al., "Iodine Transmutation through Laser Compton Scattering Gamma Rays", J. Nuclear Science and Technology, 46, pp.831-835(2009).
- [10] K.Horikawa et al., "Measurements for the energy and flux of laser Compton scattering γ-ray photons generated in an electron storage ring: NewSUBARU", Nucl. Inst. and Meth. in Phys. Res., A 618, pp 209-215, (2010).
- [11] T.Kondo et al., "Determination of the number of pulsed laser-Compton scattering photons", Nucl. Inst. and Meth. in Phys. Res. A, 659, pp. 462-466(2011).
- [12] H.Ejiri et al., "Resonant Photonuclear Reactions for Isotope Transmutation", J. Phys. Soc. Jpn., 80, pp. 094202-1-6 (2011).
- [13] K.Horikawa et al., "Photonuclear Reaction of Iodine-129 with Laser-Compton Scattering Gamma-Rays Using Nd:YVO4 Laser and Electron Storage Ring", Rev. of Laser Engineering, 39, pp.445-447 (2011).
- [14] F.Kitatani et al., "Measurement of energy distribution of laser- Compton scattering(LCS) gamma-ray by the highresolution high-energy photon spectrometer (HHS)", Workshop on Laser Compton Scattering Gamma-ray Beamline at NewSUBARU, Harima, Hyogo, July 25 (2012).
- [15] D.Bernard et al., "HARPO A status report", Workshop on Laser Compton Scattering Gamma-ray Beamline at NewSUBARU, Harima, Hyogo, July 25 (2012).