PRESENT STATUS OF THE SLOW POSITRON BEAM FACILITY IN AIST

Nagayasu Oshima[#], Brian E. O'Rourke, Atsushi Kinomura, Toshiyuki Ohdaira, Hiroshi Ogawa, Ryoichi Suzuki

National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 Japan

Abstract

Intense, slow positron beams for advanced material defect characterization and surface analysis are produced at AIST using an electron linear accelerator TELL and a planned superconducting accelerator. At present there are 3separate positron beamlines in which measuring apparatus including positron annihilation lifetime measurement system (PALS), positron probe microanalyzer and a simultaneous ion beam implantation - positron analysis system. These slow positron based characterization facilities are available to external users through a consortium and the IBEC advanced instrument innovation forum and are currently the basis of more than 10 research projects per year.

産総研陽電子ビーム利用施設の現状

1. はじめに

産業技術総合研究所(産総研)では、電子加速器 を用いて発生した高強度低速陽電子ビームを用いて、 先端材料の特性を左右する要因である「原子空孔」 「分子間空隙」「微小欠陥」等の評価を行っている。 また低速陽電子ビームの制御技術の開発・改良を行 うことで、新しい材料分析法の実用化研究も実施し ている。ここでは産総研の低速陽電子ビーム利用施 設の現状について述べる。

2. 低速陽電子利用施設の概要

陽電子は、原子空孔の高感度プローブとして知ら れている。高速の陽電子を減速材を通すことで、低 速陽電子ビーム(エネルギー幅数 eV 程度)を生成 できる。低速陽電子ビームを用いれば、陽電子を試 料の表面近郊に限定的に入射することができるため、 先端材料の開発等に利用することができる。産総研 では、陽電子の発生に電子加速器を用いている。加 速器からの高エネルギー電子ビームを重金属ター ゲットに照射して、発生した電磁シャワーに含まれ る高速陽電子をタングステン薄膜(減速材)を通し て、低速陽電子ビームを得る^[1]。

2.1 陽電子生成用加速器の概要

図1 に低速陽電子ビーム利用施設全体の概要図 を示す。陽電子発生用の加速器には、電子線形加速 器(TELL)および超伝導加速器(SCA)を用いる。TELL は80 年代後半から、陽電子の発生に利用されてき た。一方 SCA は、日本原子力機構の自由電子レー ザ施設^[2]から譲り受けたものであり、現在、陽電子 発生用にメンテナンス中である。SCA を陽電子発生 に用いる利点は、電子ビームのパルス時間構造を、 材料分析で必要な低速陽電子ビームのパルス時間構 造と同じにすることができるので、低速陽電子ビー ム生成後の利用効率を改善できることである^[3]。これにより、低速陽電子ビームを用いた材料分析のスループットが高くなることが期待される。TELL では~70 MeV まで電子を加速するが、SCA では~10 MeV 以上まで加速の予定である。なお、SCA の加速空洞は Nb 製 5 セル構造で、共振周波数は 500 MHz である。

2.2 低速陽電子ビームラインの概要

現在、産総研には3つの低速陽電子ビームライン がある。図2には、ビームライン#1およびビーム ライン#2の計測部周辺の写真を、図3にはビーム ライン#3の計測部周辺の写真を示す。以下に、そ れぞれの低速陽電子ビームラインの特徴を記す。

低速陽電子ビームライン#1 は、TELL を用いて高 強度の低速陽電子ビーム(毎秒 10⁷-10⁸ 個)を発生 し利用する。1990年初頭に、リニアックの電子 ビームパスルと同期して生成されるパルス状(1μ s の時間幅に 10⁵ 以上の陽電子を含むバースト状) 陽電子ビームを、準直流ビームに変換するためのリ ニアストレージシステムを開発した。これにより、 陽電子消滅ガンマ線用検出器のパイルアップを防ぐ ことが可能となった。また、陽電子寿命測定 (Positron Annihilation Lifetime Spectroscopy: PALS)を 高時間分解能で行うために、準直流ビームを短パル ス化するシステムを世界に先駆けて開発した^[4]。 ビームエネルギーを 1-30 keV まで調整することで、 表面から深さ1マイクロメートル程度までの陽電子 寿命測定を高計数率(10 kcps)で行うことができる。 1990 年代後半から 2000 年代にかけて、陽電子消滅 誘起オージェ電子分光装置 (PAES: Positron. Annihilation Induced Auger Electron Spectroscopy^[5]) やポジトロニウム飛行時間測定システム等の開発を 行い、試料表面の不純物や細孔の連結性等の評価・ 研究を行ってきた。

[#] nagayasu-oshima@aist.go.jp

図1:産総研・低速陽電子ビーム利用施設の全体概略図

図2:低速陽電子ビームライン#1および#2の測定部周辺の景観

また、2008年には、低速陽電子ビームの輝度増強 法を開発し^[6]、これにより陽電子ビームのビーム径 は、10ミリメートルから数十マイクロメートル程 度にまで高効率に集束可能となり、走査型陽電子マ イクロビーム計測法が実用化された^[7]。この計測装 置は、陽電子プローブマイクロアナライザー (Positron Probe Microanalyzer: PPMA)と呼ばれている。 また 2012年になって、陽電子マイクロビームを薄 膜真空窓を通して大気中に引き出し"その場"計測 する技術を開発した^[8]。この"その場"計測装置は、 大気 PPMA(Atomospheric PPMA: A-PPMA)あるいは 環境制御 PPMA と呼ばれている。また、再放出陽 電子顕微鏡 (Positron Re-emission Microscopy: PRM) の開発も行っている。なお、現在ビームライン#1 では、2本のポートが利用できる。

低速陽電子ビームライン#2 は 2010 年に構築された。陽電子発生には、TELL および SCA の両方を用いることができる。利用ポートは、PALS および PPMA 用の 2 本がある。

低速陽電子ビームライン#3 は 2011 年に構築され た。陽電子発生には、TELL を用いている。利用 ポートは1本であるが、イオンビーム源とも連結さ れているため、試料をイオン照射中にも低速陽電子 ビーム分析が可能である^[9]。

	ビームライ ン#1	ビームライ ン#2	ビームライ ン#3
ポート 数	2	2	1
エネル ギー	1-30 keV	1-30 keV	1-30 keV
計測装置	PALS PAES PPMA A-PPMA PRM (開発 中)	PALS PPMA	PALS イオン・陽 電子同時照 射装置
主な利 用目的	新計測技術 開発	公開利用	照射欠陥分 析

表1:低速陽電子ビームラインの特徴

3. 陽電子ビーム施設の利用体制

産総研では、低速陽電子ビームを用いた先端計測 装置を、陽電子ビーム利用材料評価コンソーシアム ^[10]・先端機器共用イノベーションプラットフォーム (IBEC)^[11]・ナノテクノロジープラットフォーム^[12]・ 共同研究等を通して積極的に公開利用しており、年 間10件以上の研究課題支援が進展中である。

図3:低速陽電子ビームライン#3の測定部周辺の 景観

参考文献

- [1] B. E. O'Rourke, et al., Rev. Sci. Instrum. 82, 063302 (2011).
- [2] N. Kikuzawa et al., Nucl. Instrum. Meth. A331, 276 (1993).
- [3] B. E. O'Rourke, et al., J. Phys.: Conf. Ser. **262**, 012043 (2011).
- [4] R. Suzuki et al., Jpn. J. Appl. Phys. 30, L532 (1991).
- [5] T. Ohdaira et al., Appl. Surf. Sci. 116, 177 (1997).
- [6] N. Oshima et al., J. Appl. Phys. 103, 094916 (2008).
- [7] N. Oshima et al., Appl. Phys. Lett. 94, 194104 (2009).
- [8] W. Zhou et al., App. Phys. Lett. 101, 014102 (2012).
- [9] A. Kinomura et al., Phys. Procedia **35**, 111 (2012).
- [10] http://unit.aist.go.jp/riif/adcg/News/News_jpn.html
- [11] http://www.open-innovation.jp/ibec/
- [12] http://unit.aist.go.jp/riif/ja/nanotech/index.html