COMMISSIONING OF ACCELERATORS OF THE CENTRAL JAPAN SYNCHROTRON RADIATION FACILITY

N. Yamamoto^{* A, B)}, M. Hosaka ^{A, B)}, K. Takami ^{B)}, T. Takano ^{A, B)}, A. Mano^{A, B)},

E. Nakamura^{A, B)}, H. Morimoto^{A, B)}, Y. Takashima^{A, B)}, M. Katoh^{B, C)},

Y. Hori^{A, D)}, S. Sasaki^{A, E)}, S. Koda^{A, F)} A. Murata^{G)} K. Nakayama^{G)}

^{A)}Synchrotron radiation Research center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aich 464-8603

^{B)}Aichi Science & Technology Foundation (ASTF), 250-3, Minamiyamaguchi-cho, Seto, Aichi 489-0965

^{C)}UVSOR, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki, 444-8585

^{D)}High Energy Accelerator Research Organization, KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801

^{E)}JASRI/SPring-8, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198

F)SAGA-LS, 8-7 Yayoigaoka, Tosu, Saga, 841-0005

^{G)}Toshiba Corp., 8 Shinsugita, Isoko-ku, Yokohama, 235-8523

Abstract

Central Japan Synchrotron Radiation (SR) Facility Project is making progress for the service from FY2012. Construction of the SR building and installs of accelerators have been completed in the Aichi area of Japan, and the beam commissioning is started in Spring of 2012. The key equipments of the accelerators are a compact electron storage ring with the ability to supply hard X-rays and full energy injectors for the top-up operation. The accelerators consist of an electron storage ring, a booster synchrotron ring, and an injector linac. Up to now, it is confirmed that the 1.2 GeV storage ring works with low current beams around 40 mA. However, some problems remain on the accelerators. In this paper, the present status of the accelerators are reported.

中部シンクロトロン光利用施設における光源加速器コミッショニング

1. はじめに

愛知県名古屋市の東方約20kmの豊田市、瀬戸市にま たがる「中部シンクロトロン(SR)光利用施設」では (株)東芝による光源加速器群の建設が2012年3月末 に終わり、その後引き続きビーム試験が開始された。ま た、当初開設予定のビームライン6本^[1]についても既 に建設が完了しており、現在は各種光学・計測系の調整 段階に入っている。

当施設は学術研究はもちろん、産業界をはじめ幅広 い分野での利用を目的とし、計画段階から愛知県、地 域の産業界、大学連合(名古屋大学、名古屋工業大学、 豊橋技術科学大学、豊田工業大学)らが協力してきた。 施設の整備・運営母体は(財)科学技術交流財団¹であ り、2012 年度内の供用開始が計画されている。

名古屋大学シンクロトロン光研究センター(NUSR) 光源部門は加速器群の設計・立ち上げを主に担当してお り、光源加速器群の請負業者の決定した 2009 年 12 月 より、その請負業者である(株)東芝と綿密な打合せを 繰り返してきた。^{[3][4]}

光源加速器群は東芝の建設グループによる RF 空洞 エージング及び線形加速器試験で所定の性能を確認さ れた後、2012 年 3 月末に(財)科学技術交流財団に引 き渡された。以降、中部 SR では NUSR 光源部門が主 体となり東芝メンバーと協力しながらビーム試験を行っ ている。 ビーム試験は現在、入射器に幾つかの問題を残しな がらも蓄積リングの調整運転に入っている。中部 SR の 詳細については参考文献を参照して頂くものとし、本発 表では光源加速器群について簡単に概要を説明し、さら に現在の各加速器の現状を紹介する。

2. 光源加速器群の概要

光源加速器群の設計パラメータを表1に、各装置の 配置図を図1に示す。中部SRでは地上1F部分に星形 の遮蔽壁を設け^[5]、その内部に光源加速器一式を配置 している。光源加速器は蓄積リング、ブースターシンク ロトロン(ブースター)及び線形加速器から成る。

光源加速器の特徴は蓄積リングの偏向電磁石に超伝 導電磁石を採用したこと、トップアップ運転の早期実現 のためフルエネルギー入射可能なブースターを備える ことである。ビームラインは各偏向電磁石と一つの挿入 光源(Apple-II型アンジュレータ)からシンクロトロン 光を利用し、供用開始時は6本、将来的には約30本の ビームライン増設が可能となっている。

3. 線形加速器

線形加速器部の設計は NUSR の仕様要求及び提案を もとに(株)AET によって行われた。^[6]線形加速器部は CPI 社 Y-845 を熱電子銃に用いた直流型の 100kV 電子 銃、S-band のプリバンチャー,バンチャー,1.5m レギュ ラー加速管 2 本から成る。電子銃で蓄積リングの基準 信号に同期し 1Hz で生成された電子ビームは、プリバ

^{*} naoto@nagoya-u.jp

¹http://www.astf.or.jp/index.html

図 1: 光源加速器の概要図。蓄積リング、ブースターシ ンクロトロン、線形加速器から成る。

ンチャー, バンチャー管を通して約12 MeV に、進行波 管型のレギュラー加速管二本において 50 MeV まで加速 され、その後偏向電磁石で 30 度偏向され低エネルギー 輸送路に導かれる。ビーム性能は偏向電磁石の0 度ラ インでエミッタンス、30 度偏向後のスクリーンモニタ またはチャージモニタとスリットによってエネルギー拡 がりを測定可能である。電子銃で生成されるビームパル ス長はガンパルサー(Kentech 社 CPS1/M High voltage pulse generator)のユニット交換により、560 ps, 760 ps, 1.05 ns の 3 段階に切り替えが可能となっている。

現状において、線形加速器から得られる電子ビーム の性能は電荷量 0.7 nC パルス幅 560 ps に対しエミッタ ンス ~ 100 π.mm.mrad (RMS), エネルギー拡がり 0.8% (RMS, 10 ショット平均) と未だ当初の設計目標は満たし ていない。さらに、ショット毎ではエネルギーが 1%以 上ふらつくこともあり、後述するブースターへの入射に も大きな影響を与えている。この要因は現在調査中であ るが、電子銃直下のステアリング電磁石が設計ミスによ り十分に動作していないこと、各加速管のエージングが 十分ではなく時折小さな放電がみられること、クライ ストロンモジュレータの充電電圧が不安定であること、 が判明しておりこれらのことが起因しているのではな いかと考えている。

また、高周波導波管の一部はコストを重視し、SF₆充 填タイプを採用しているが、未だリークを解決できてお らず、数週間に一度のSF₆の充填が必要となっている。

4. ブースターシンクロトロン

ブースターシンクロトロンは周長 48 m の FODO 型 のラティス構造であり、電子ビームを 50 MeV から フ ルエネルギーである 1.2 GeV まで加速する。線形加速 器から低エネルギー輸送路、セプタム電磁石を経由し

Storage ring	
Electron energy	1.2 GeV
Circumference	72 m
Current	>300 mA
Natural emittance	53 nm-rad
Betatron tune	(4.72, 3.23)
RF frequency	499.654 MHz
RF voltage	500 kV
RF bucket height	>0.990 %
Harmonics number	120
Energy spread	$8.41 imes 10^{-4}$
Magnetic lattice	Triple Bend Cell $\times 4$
Normal bend	1.4 T, 39°
Superbend	5 T, 12°
$(\beta_x, \beta_y, \eta_x)$ @superbend	(1.63, 3.99, 0.179)
$(\beta_x, \beta_y, \eta_x)$ @straight section	(30.0, 3.77, 1.20)
Booster synchrotron	
Electron energy	50 MeV – 1.2 GeV
Circumference	48 m
Current	>5 mA
Natural emittance	200 nm-rad
RF frequency	499.654 MHz
Magnetic lattice	FODO Cell
Harmonics number	80
Injection scheme	On-axis (single turn)
Repetition rate	$\sim 1 Hz$
Injector linac	
Beam energy	50 MeV
Charge per pulse	>1 nC
Pulse length	1 ns
RF frequency	2,856 MHz
Repetition rate	$\sim 1 Hz$

表 1: 光源加速器のパラメータ

て入射された 50 MeV の電子ビームはセプタム電磁石 の次の直線部でファーストキッカーによりオンアキシス 入射される。入射された電子ビームは約 600 ms で 1.2 GeV まで加速され、ファーストキッカー及び取り出し セプタムによって出射される。出射時のエミッタンスは 設計値で 200 nmrad である。

ブースターシンクロトロンは主に(株)東芝を中心 に設計されており、真空ダクトのアパーチャを水平±20 mm(最小±10mm),垂直±10mmに抑えるなどし、電 磁石部をコンパクトに抑え低コスト化の努力が成され ている。^[8]また、高周波源としても10kW出力の半導 体アンプを採用しており、立体回路・ダミーロード等高 周波系システムの小型化に成功している。

表2に現状における入射器の達成パラメータを示す。 ただし、ブースターシンクロトロンにおけるエミッタ ンスはチューンより推定したものである。当初、ブース ター用電磁石電源の不安定性に苦しめられたが、その

表 2: 入射器の現状

Booster synchrotron	
Horizontal Tune	2.83
Vertical Tune	2.23
Natural emittance	200 nm-rad (calc)
RF frequency	499.654 MHz
Injection Current	$\sim 4 \ mA$
Extraction Current	0.4 mA (average)
Injector Linac	
Beam Charge	$\sim 0.7~{ m nC}$
Pulse length	0.56 ps (E-gun)
Normalized Emittance	
Horizontal	104 π .mm.mrad
Vertical	41 π .mm.mrad
Energy Spread	0.8 % (RMS)

後電源回路パラメータ改修により安定化に成功しビー ム周回・加速に成功した。現状では設計値とほぼ同じエ ミッタンスでビームを加速し蹴り出すことには成功し ているが、ブースターへの入射・加速効率が低くわず か8%程度に留まっている。図2にプースターシンクロ トロンでのビーム周回の様子を示す。図中C4(緑)が DCCTの出力(電流値に比例)であり、入射直後(時間 軸100 ms/div)にほとんどの電子ビームが失われている ことがわかる。今後、入射路の最適化とブースター加速 軌道について詳細な調査を行い、将来的には少なくとも 30%以上の加速効率を実現させる予定である。

5. 蓄積リング

蓄積リングはエネルギー 1.2 GeV, 周長 72 m で蓄積 電流 300 mA, エミッタンス 53 nmrad を目指している。 ラティス構造は 5T の超伝導偏向電磁石 4 台、常伝導電 磁石 8 台、を用いた 4 回対称の Triple Bend Cell を採用 しており、超伝導偏向電磁石から得られるシンクロト ロン光の臨界エネルギーは 4.8 keV である。また、挿入 光源としてアンジュレータ 1 台がインストールされて いる。本蓄積リングの特徴である超伝導偏向電磁石は 液体 He などは用いず、各電磁石毎に一台の 2 ステージ の4K-GM冷凍機(住友重機械工業 SRDK-415D-W71C) を用いて冷却しており、現在までクエンチ等を起こすこ となく問題なく稼働している。

蓄積リングへのビーム入射は従来から実績のあるバ ンプ入射を採用しており、4 台のパルス電磁石を用い入 射器の繰り返し周波数である 1Hz でシングルバンチ入 射を行う。

蓄積リングへの一秒以上のビーム周回は2012年7月 18日に成功し同日に、1.5 mAまでの蓄積にも成功した。 中部SRでは偏向電磁石が電源5つ(偏向電磁石1つと 超伝導偏向電磁石4つ)に別れているうえに超伝導偏 向電磁石は磁場測定結果の誤差が相対的に大きく、入射 ビームと各偏向電磁石のエネルギー調整に時間が要し た。調整当初ビームが一定時間周回するまではアクロ マートなラティスを用いることで実質的なエネルギーア パーチャを広げビーム調整を行い、初のビーム蓄積を実 現した。図3に蓄積リング、初蓄積時の真空度変化を示 す。蓄積の成功した2012/07/1818時19分に真空度が 突然上昇する様子、その約一時間後には積み増しに成功 し真空度が徐々に上がっていく様子がわかる。

ビームが一旦蓄積された後は、蓄積リングと周回する 電子ビームのダイナミクスを調べることが可能となり、 現在は設計とほぼ同じチューンで蓄積リングを運転して いる。蓄積リングのコミッショニングは入射器の不調に より入射電荷量も安定性も十分とは言い難い状況であ るが、トップアップモードで真空焼だしとビーム調整が 続けられている。8月初旬の状態では、蓄積電流値38 mA,電流 I・寿命 7 積 で 9.0 mA.hour を記録している。

図 3: 蓄積リング、初蓄積時の真空度変化

マスターオシレータ及びタイミング系

ビーム調整中の問題の内、各加速器に共通な問題とし てマスターオシレータの不具合があり、各タイミング系 や高周波系に影響が生じている。マスターオシレータは リング系の499.654 MHz と線形加速器系の2856 MHz の同期をとるため、共通の基準クロックから作成する設 計であった。^[9] これは全てのタイミング系を同期させ るのに有効な手段として採用されたが、当初の運転状況 では上記基準クロックが安定せず結果的に各タイミング 間に大きなジッターを与えることとなった。現在、この 状況は完全には修復できておらず、マスターオシレータ の基準信号としてルビジウムの外部クロックを用いて運転している。

7. 制御システム

制御については根幹に EPICS(Experimental Physics and Industrial Control System)^[10] を採用し、GUI 及び シーケンサはそれぞれ EPICS ツールの一つである EDM と SNL を用いたシステムを用いている。EPICS はネッ トワークを用いて加速器一式の運 転・監視を制御室の みならず任意の場所や端末で行えるため非常に強力な ツールである。しかしその一方、シーケンサの機能を備 えるワークステーションやネットワークの負荷が一時的 に高まると運転に影響を与える。

中部 SR ではコストダウンのため主要なシーケンサは ワークステーション一台、また一つのスイッチングハブ に数台のプログラマブルコントローラ (PLC) がぶら下 がる構造となっているため、長期連続運転状態では負荷 が大きくなり運転に支障が生じる事態が幾度か起こって いる。今後ネットワークの増強やワークステーションの 負荷分散など対策が必要である。

8. 加速器データベース

EPICS と MySQL^[11] を利用し加速器運転状況のデー タベースを構築した。真空度・温度, 蓄積電流値など常 時監視すべき項目は最短周期 1 Hz で、各設定値やイン ターロックなどは値の変化に応じてデータベースに記 録している。データベース化しているレコード数は約 6000項目であり、データ量は圧縮後で一日辺り 2GB 弱 となっている。

本データベースは安価な市販の計算機(Mac Mini)に 外付けの RAID ハードディスク(6 TB)を接続し構築 したが、本年3月から現在まで大きなトラブルはなく運 転状況の把握や加速器トラブルの調査に役立っている。

9. まとめと今後の予定

中部 SR は線形加速器部・ブースターシンクロトロン・ 蓄積リングから成るシンクロトロン光施設であり、2012 年3月末より光源加速器群のビーム試験を開始した。現 在までに蓄積リングは、設計チューン付近で最大蓄積電 流38 mA,電流・寿命積で9.0 mA.hour を達成。入射器 については未だ目標の性能は達成してはいないが、ブー スター入射・加速効率8%(目標30%以上)蓄積リ ング入射効率15%(目標70%以上)を得ている。今 後、2012年度中の供用開始へむけ、蓄積リングへの入 射率1 mA/ shot,蓄積電流300 mA を目標に調整を続け る予定である。

10. 謝辞

本研究において大熊春夫(JASRI/SPring-8),小林幸則 (KEK)両氏には光源加速器群の設計において貴重なご 意見を頂き大変感謝しております。

KEK の原田健太郎氏にはブースターシンクロトロン 四極・六極電磁石磁場測定において多大な協力を頂き感 謝しております。

最後に本計画の実現に向け、共に活動してきて下さっ た名古屋大学シンクロトロン光研究センタースタッフ及 び学内の協力教員、科学技術交流財団および愛知県産業 労働部の皆様方に感謝致します。

参考文献

- [1] M. Hosaka, et.al., "中部シンクロトロン光利用施設の現状", Proceedings of the 7th Annual Meeting of Particle Accelerator Society of Japan, Aug. 2011
- [2] Y. Takashima, et.al., "Present Status of Accelerators of the Central Japan Synchrotron Radiation Facility", *These Proceedings*, THPS012
- [3] Y. Takashima, T. Yamane, Y. Takeda, K. Soda, S. Yagi, T. Takeuchi, et.al., *AIP Conference Proceedings*, 879, 75-78 (2007)
- [4] N. Yamamoto, Y. Takashima, M. Hosaka, H. Morimoto, K. Takami, et.al., "中部シンクロトロン光利用施設(仮称) 計画のための光源加速器の検討" Proceedings of the 6th Annual Meeting of Particle Accelerator Society of Japan, Aug. 5-7, 2009
- [5] Y. Takashima, et.al., "Radiation Shielding of the Central Japan Synchrotron Radiation Facility", *These Proceedings*, THPS062
- [6] M. Yamamoto, et.al., "DESIGN OF THE 50MEV LINAC OF THE CENTRAL JAPAN SYNCHROTRON RADIATION FACILITY", *These Proceedings*, THPS027
- [7] S. Matsuda, et.al., "Vacuum system for the Central Japan Synchrotoron Radiation Facility", *These Proceedings*,
- [8] K. Nakayama, et.al., "BOOSTER SYNCHROTRON FOR CENTRALJAPAN SYNCHROTRON RADIATION FACIL-ITY", *These Proceedings*, THPS046
- [9] A. Murata, et.al., "ACCELERATOR SYSTEM FOR THE CENTRAL JAPAN SYNCHROTRON RADIATION FACIL-ITY", *These Proceedings*, THPS047
- [10] URL:http://www.aps.anl.gov/epics/
- [11] URL:http://www.mysql.com/