HIGH QUANTUM EFFICIENCY AND LONG LIFETIME PHOTOCATHODE MATERIALS (Ir₅Ce) FOR THE SUPERKEKB ELECTRON PHOTOINJECTOR.

Daisuke Satoh ^{#A)}, Mitsuhiro Yoshida ^{B)}, Noriyosu Hayashizaki ^{C)}

^{A)} Graduate School of Science and Engineering, Tokyo Inst. of Technology, Tokyo 152-8550, Japan
^{B)} Accelerator Division, High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801, Japan
^{C)} Research Laboratory for Nuclear Reactors, Tokyo Inst. of Technology, Tokyo 152-8550, Japan

Abstract

The suitability of Ir_5Ce as an electron source for the SuperKEKB electron linac was investigated. The quantum efficiency (QE) of Ir_5Ce was increased to 1.02×10^{-4} through laser activation using the fourth harmonic of a Nd:YAG laser. The QE of Ir_5Ce for p-polarized light is about 2.2 times larger than the QE for s-polarized light. The properties of electron emission of Ir_5Ce were stable even under bad vacuum conditions (7×10^{-6} Pa). The lifetime of the Ir_5Ce photocathode was found to be more than several hundred hours.

SuperKEKB 入射器における 高量子効率・長寿命フォトカソード新材料(Ir₅Ce)の研究開発

1. はじめに

SuperKEKB 計画は、KEKB で達成されたルミノシ ティの世界最高値の 40 倍に相当する 8×10⁻³⁵ cm⁻²·s⁻¹ が目標としており、その実現のためには電子入射部 に対して、さらなる高電荷・低エミッタンスの電子 ビーム生成が要求される。SuperKEKB 電子入射部に 要求される性能は、5 nC 、10 mm·mrad の電子銃であ り、フォトカソード RF 電子銃の導入を考えている。

フォトカソード RF 電子銃において重要なコンポー ネントのひとつが、カソード材料である。図 1 に フォトカソード材料の寿命と量子効率の関係を示す。 理想的なフォトカソード材料は、高量子効率かつ長 寿命な物質であるが、現在存在していない。そのた め、一般的に、高輝度な電子ビームを生成する方法 としては、(1) Cs₂Te 等の高量子効率材料を用いる 方法と、(2) 純金属などの低量子効率材料を周出力 レーザーシステムを組み合わせる方法の 2 つがある。 しかし、この 2 つの方法では、それぞれ以下のよう な問題点を抱えている。

	方法(1)	方法(2)
カソード	①短寿命	①低量子効率
の欠点	②イオン衝撃に弱い	
	③超高真空が必須	
	④空洞内の汚染	
システム	長期安定運転に不向き	高出力レーザーが必要
の欠点		

表1 タイトルを入れる

SuperKEKB 電子入射部では、1 年間のメンテナン スフリーの営業運転を目指しており、長寿命なフォ トカソード材料と高出力レーザーを組み合わせたシ ステムの導入を考えている。

図1:フォトカソードの寿命と量子効率の関係

そこで、我々は、「高融点・低仕事関数」という 特殊な性質を合わせ持つことで知られる Ir_5Ce 化合物 に着目し、フォトカソードとしての利用可能性を研 究している。本稿では、 Ir_5Ce 化合物の製作・特性評 価についての現状について報告する。

2. Ir₅Ce の特徴

 Ir_5Ce 化合物は、既に熱陰極として次のような優れた性質をもつことが報告されている^[1-2]。

①融点が約2200℃と高融点

②仕事関数が、表面温度が1300 Kのときに2.57 eV と LaB₆の仕事関数と同程度かそれ以上に低い

- ③熱陰極の寿命を決める蒸発速度が 1.6×10⁻⁹ g/s/cm² とかなり遅い
- ④イオン衝撃に強い
- ⑤電子放出特性は雰囲気に影響されにくく、10⁴ Pa の高真空を維持すれば安定した電子放出特性を維 持可能

これらの Ir₅Ce 化合物の熱陰極としての優れた特性 は、フォトカソードにも当てはまると考えられる。 すなわち、①はフォトカソードとして使用した際に レーザー照射に対する耐久性が高いこと、④と⑤は

[#] satou.d.ad@m.titech.ac.jp

SuperKEKB のような加速器の長期安定的な運転に適 することを意味する。

3. Ir₅Ce 化合物の製作・分析

今回使用する Ir_5Ce 化合物は、株式会社コベルコ 科研の協力のもと、プラズマアーク溶解鋳造法で製 作した。Ir よりも Ce の溶解時蒸気圧が高いため、 溶解前の素材重量と溶解後の鋳塊重量との差は、Ceの蒸発ロス量と見なして濃度制御を行った。

本溶解鋳造法で製作した Ir₅Ce 化合物は、SEM-EDX 法による半定量的な成分分析を行った(図 3)。 成分分析の結果、Ir と Ce の組成比は、原子数濃度

(%) で 14.8:85.2 であり、ほぼ目的の Ir_5Ce 化合物が製作できていることが確認できた。

図2:今回製作した Ir5Ce 化合物

図3:SEM-EDX 法による成分分析結果

4. 量子効率測定

4.1 測定装置

光電子放出過程は、フォトカソードが持つ固有の 仕事関数以上のエネルギーをもった光を照射するこ とで起こる物理現象である。今回の量子効率測定は、 SuperKEKBの運転で使用予定である、波長が 266nm

(1 光子当たりのエネルギー;4.66 eV)のレーザー
(Nd:YAG laser 第四高調波、パルス幅;10ns、繰返し;10Hz、入射角度;55°)で行った。図4に測定
装置の概略図を示す。

図4:測定装置図

4.2 測定条件·結果

フォトカソードの光電子放出特性は、材料の表面 状態によって大きく左右される。そこで今回は、数 mJ 程度のレーザーを 5~10 分程度照射する Laser activation^[3]という表面処理を行った後に量子効率を 測定し、図 5 のような結果が得られた。横軸は表面 処理の際に照射したレーザー(波長 266nm)のエネ ルギー密度であり、表面処理時間に関しては、すべ て 15 分間の連続照射で統一した。結果的に、 Ir_5Ce の量子効率は約 1×10⁴ であり、純金属のフォトカ ソードの量子効率よりも比較的高い量子効率をもつ ことがわかった。

5. 電子放出特性の偏光依存性

フォトカソードの光電子放出特性は、照射する レーザー光の偏光状態にも大きく影響される。特に カソード表面に対して垂直方向から、ある角度傾け た方向から入射するとその効果が表れる。そして、 一般的に S 偏光の光よりも P 偏光の光を照射したほ うが、量子効率が高いことが多くのフォトカソード で確認されている^[48]。これらの要因に関して多くの 研究がなされており、①偏光による反射率の違い^[5]、 ②偏光による陰極内電子の励起確率の違い^[8]、③ surface photoemission の発生^[4,7]、など多くの要因が

考えられる。

本測定では、レーザーをカソード表面に対して垂 直方向から 55°傾けた方向から照射した。その際に、 ポラライザーを使用してレーザー光の偏向角度を変 化させて照射し、量子効率の偏光依存性を測定した。 その結果を図 6 に示す。P 偏光と S 偏光の場合で、 量子効率が約 2.15 倍異なることがわかる。

図6:量子効率の偏光依存性

この要因について Ir_5Ce フォトカソード表面の反 射率に着目し考察を行った。ここでは、 Ir_5Ce 内の含 有元素の約 85%以上が Ir であるため、波長が 266nm の光に対する純 Ir の複素屈折率(1.2670+2.5754×i) の値^[9]を利用して P 偏光と S 偏光の反射率を計算し た。P 偏光と S 偏光の反射率は、フレネルの式より、 それぞれ $R_p = 0.4077$ 、 $R_s = 0.7311$ と計算でき、P 偏 光の方が S 偏光の光よりも約 2.2 倍、Ir に吸収され るという計算結果が得られた。この偏光による反射 率の違いが、量子効率の違いに大きく寄与している と考えられる。また、実際に波長 266nm の光に対す る Ir_5Ce の反射率を測定したところ、P 偏光の光に 対して $R_p = 0.3783$ となり、比較的計算値と近い値が 得られた。

6. 低真空下での電子放出特性と表面分析

Ir₅Ce は、熱陰極の場合、非常に悪い真空条件下 (\doteq 10⁴ Pa)でも非常に良い電子放出特性を示すこ とが知られている^[1]。そこで、フォトカソードの使 用条件としては悪い 7×10⁶ Pa の真空度で Ir₅Ce フォトカソード使用し続けた際に、その光電子放出 特性がどのように影響されるのかを量子効率を測定 することで検証した。すると、5 日間使用し続けた 後でも、その電子放出特性が全く変化しないという 結果が得られた。この測定結果から、Ir₅Ce は、フォ トカソードとして使用した際も比較的低真空下でも 安定的な電子放出特性が得られるということがわ かった。

次に、Ir₅Ce の電子放出特性が真空度に影響されに くいという性質を理解するために、SEM-EDX 法を 用いて、カソード表面の元素分析を行った。比較サ ンプルとして多結晶 LaB₆の測定も行った。これら 2 つのカソード材料は、形状加工後、ともに大気にさらした状態で保存していたものを分析した。図7は SEM-EDX 法による分析結果を示しており、(a)は多結晶 LaB₆の、(b)は Ir₅Ce の分析結果である。

図 7: SEM-EDX 法による分析結果

図7の分析結果を見ると、Ir₅CeはLaB₆と比較して、大気中で保管していたにもかかわらず、酸素や炭素などの不純物の付着が圧倒的に少ないことがわかる。この結果から、Ir₅Ceカソードが大気中の成分と反応が起こりづらく、そのため、比較的低真空下でも安定的な電子放出特性が得られるのだと考えられる。

7. まとめ

我々は、Ir₅Ce フォトカソードを材料製作から行い、 量子効率が 1×10⁴ と純金属系のフォトカソードの 量子効率よりも高く、低真空下でも良い電子放出特 性を示す、といったフォトカソードとしての有用性 を見出した。また、現在、寿命測定についても行っ ており、数 100 時間の連続照射に対しても、電子放 出特性(量子効率)が低下しないというような良い 結果が得られてきている。

参考文献

- G.I.Kuznetsov, "IrCe Cathodes For EBIS.", Journal of Physics: Conference Series 2 (2004) 35–41
- [2] G.Kuznetsov," High temperature cathodes for high current density", Nuclear Instruments and Methods in Physics Research A 340 (1994) 204-208
- [3] 栗木雅夫, "粒子源の設計と現状", 高エネルギー加速器 セミナーOHO 2006 年
- [4] Douglas J. Bamford, et al.,"The search for rugged, efficient photocathode materials", Nuclear Instruments and Methods in Physics Research A318 (1992) 377-310
- [5] K.Sakaue, et al. "Cs-Te photocathode RF electron gun for applied research at the Waseda University", Nuclear

Instruments and Methods in Physics Research B 269 (2011) 2928–2931

- [6] T. Srinivasan-Rao, et al. "Sputtered magnesium as a photocathode material for rf injectors", REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 69, NUMBER 6 JUNE 1998
- [7] B Feuerbacher, et al. "Photoemission and electron states at clean surfaces", J. Phys. C: Solid State Phys., Vol. 9, 1976. Printed in Great Britain. 1976
- [8] J.K. SASS, "EVIDENCE FOR AN ANISOTROPIC VOLUME PHOTOELECTRIC EFFECT IN POLYCRYSTALLINE NEARLY FREE ELECTRON METALS", Surface Science 51 (1975) 199-212
- [9] Edward D. Palik, "Handbook of Optical Constants of Solids", Academic Press