STUDY ON THE FABRICATION OF SUPERCONDUCTING 9-CELL CAVITY FOR ILC AT CFF/KEK

T. Saeki ^{#A)}, Y. Ajima ^{A)}, K. Enami ^{A)}, H. Hayano ^{A)}, H. Inoue ^{A)}, E. Kako ^{A)}, S. Kato ^{A)}, S. Koike ^{A)}, T. Kubo ^{A)}, S. Noguchi ^{A)}, M. Satoh ^{A)}, M. Sawabe ^{A)}, T. Shishido ^{A)}, A. Terashima ^{A)}, N. Toge ^{A)}, K. Umemori ^{A)}, K. Ueno ^{A)}, K. Watanabe ^{A)}, Y. Watanabe ^{A)}, S. Yamaguchi ^{A)}, A. Yamamoto ^{A)}, Y. Yamamoto ^{A)}, M. Yamanaka ^{A)}, F. Yasuda ^{B)}, K.

Yokoya A)

A) KEK

1-1 Oho, Tsukuba-shi, Ibaraki-ken, 305-0801, Japan ^{B)} Department of Physics, Faculty of Science & Graduate Scool of Science, The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan

Abstract

We have been constructing a new facility for the fabrication of superconducting RF cavity at KEK from 2009. In the facility, we have installed a deep-drawing machine, a half-cup trimming machine, an electron-beam welding machine, and a chemical etching room in one place. We started the study on the fabrication of 9-cell cavity for International Linear Collier (ILC) from 2009 using this facility. The study is focusing on the cost reduction in the mass production of 9-cell cavities in ILC. This article reports the current status of this study.

KEK における空洞製造施設による ILC 用超伝導9セル空洞の製作の研究

1. はじめに

インターナショナルリニアコライダー (ILC) では、約 17,000 台の超電導 9 セル加速空 洞の設置が必要である。ILC Reference Design Report [1] では、空洞生産後の空洞受け入れ性能検査にお いて、加速電界として 35MV/m を合格性能とし、さ らに、その生産における歩留まりとして 90%を仮定 している。ILC 研究における空洞性能は、世界平均 で約80%を達成しているが、また十分とは言えない。 また、実際の ILC 建設の際には、更なるコスト削減 が必要である。このような状況において、KEK では、 2009 年から新らたに空洞製造施設(Cavity Fabrication Facility / CFF)の建設を行ってきた。 この施設では、超伝導加速空洞の製作のために必要 な機器、すなわち、プレス機、旋盤、化学研磨室、 電子ビーム溶接機、等が一か所に集約設置されてい る。我々は、この施設を使用して、2009 年から ILC のための超伝導9セル空洞の製作の研究を行ってい る。 この研究は、特に ILC での超伝導9セル空洞 量産における高い歩留まりとコスト削減に焦点を 絞って行われている。

2. 空洞製造施設の機器

図1に、新しく建設した空洞製造施設に設置した 主な装置の写真を示した。最も大切な装置は、電子 ビーム溶接機である。超電導9セル空洞は純ニオブ 製であるが、全ての部品の溶接組立をこの装置に よって行う。プレス機は、9セル空洞のセル部に使 われるカップと呼ばれるお椀状の部品をニオブ円盤 から深絞りにより製造する。縦型旋盤は、プレスさ れたカップの両端を機械加工して、組み立て溶接時 の接合部を加工する。機械加工された部品は、機械 油などで汚れているため、化学研磨室においてフッ 酸とリン酸の混合液にて化学研磨された後に、電子 ビーム溶接機で溶接される。また、製造した部品の 寸法測定をする装置や、部品表面を観察する顕微鏡 なども設置されている。これらの装置は、Class 10,000のクリーンルーム内に集約されている。

図1:空洞製造施設における、主な製造装置

この空洞製造施設においては、空洞製造のための 材料、すなわち、純ニオブの板材やパイプ材等を施 設内に搬入した後、それらの材料の加工から空洞の 最終組み立て作業までの全てを、この施設内で完了 することができる。超電導空洞の製作においては、 部品溶接の際に、純ニオブ以外の物質が混入するこ とで超電導性能が劣化することが起こるため、ク リーンルーム内の清浄な環境において、全ての製造 工程が行われることが非常に大切である。

超電導9セル空洞 KEK-00 号機(高調 波 HOM 減衰器無)の製作

3.1 KEK-00 号機の主要な組立部品

空洞製造施設の装置設置作業は、2011 年 7 月に おおよそ完了したが、それに先立って、2010 年の 中ごろから、ジョブショップで溶接作業を行うこと で、超電導9セル空洞 KEK-00 号の製作を開始した。 KEK-00 号の製作では、製作工程を簡素化するため に、複雑な形状の高調波(HOM)減衰器を省略した設 計とした。KEK では、2004 年頃から空洞製造施設 の建設前までに、ジョブショップで溶接を行う方式 で、超電導9セル空洞の製作に関して 10 本以上の 経験があった。しかし、新しい空洞製造施設の人員 は、ほとんど9セル空洞の製作の経験が無かったた め、KEK-00 号空洞の製作は、新しい人員の訓練と いう目的もあった。図2に、KEK-00 号空洞の完成 後の写真と、その主な部品の写真を示した。

図2:完成した KEK-00 号と主な組立部品

図2の中央下に示されたセンターセルと呼ばれる 空洞中央の部分は、ジョブショップにて溶接作業を 行った。その両端にあるエンドグループと呼ばれる 部分は、空洞製造施設(CFF)の電子ビーム溶接(EBW) 機の設置が設置された後、KEK/CFF において溶接作 業を行った。

図3:ジョブショップにおける KEK-00 号のセン ターセル部の溶接作業

3.1 ジョブショップでのセンターセル部の製作

図3に、ジョブショップにおける KEK-00 号空洞 のセンターセル部の溶接作業の写真を示した。セン ターセル部分では、まず、深絞り加工によって製作 したカップと呼ばれる部品を、径の小さい開口部を 溶接により接合して、ダンベルと呼ばれる部品を製 作する。ダンベル部品については、図2の左下の写 真を参照されたい。ダンベルという名前は、見た通 り筋力トレーニングで使用するダンベルにその形状 が似ているためである。このダンベル部品の開口部 を溶接により接合することでセンターセル部が完成 する。完成したセンターセル部は、KEK においてそ の内部を特殊な内視鏡によって観察し、溶接部の内 面に欠陥などが無いこと確認した。

3.2 KEK/CFF でのエンドグループの製作

図4に、CFF/KEK における KEK-00 号機のエン ドグループの組立溶接作業の写真を示した。エンド グループは部品を治具で拘束し、部品を回転させな がら溶接を行う。図4の下の2つの写真が、組立溶 接後の電力インプットポート側のエンドグループの 写真(右)、電界モニターポート側のエンドグルー プの写真(左)である。

図4:KEK/CFFにおけるエンドグループの組立作業

3.3 ジョブショップでの最終溶接の失敗

センターセル部とエンドグループの組立は、セン ターセル部の両端にある開口部とエンドグループの 大きな開口部を溶接して接合する。この溶接は、セ ンター部の溶接と同じ条件で行われるため、再度 ジョブショップにおいて溶接作業を行った。図5に、 ジョブショップにおけるセンターセル部とエンドグ ループの溶接作業の写真を示した。最初に電界モニ ターポート側のエンドグループをセンターセル部に 溶接し、この溶接作業は成功した。しかし、電力イ ンプットポート側のエンドグループをセンターセル 部に溶接する作業中に、溶接部に穴が開いた。図5 の右上と左下の写真がその穴を示している。図5の 右下の写真に示すように、溶接中は電子ビームの電 圧や電流をモニターしていたが、穴が開いた溶接の 際に、それらのパラメーターに異常は無かった。 ジョブショップの工場内は、クリーンルームの環境 ではなく、LED ライトなどで観察すると、空洞に少 なからずチリが付着することが確認されていた。正 確に穴の原因を特定することは困難だが、溶接機の 電子ビームに異常が無かったとすれば、接合面に工 場内でゴミが付着したために、溶接作業中にそのゴ ミが高温でガス化して、溶接部に穴が開いた可能性 が考えられる。この失敗から学んだことは、溶接作 業中の清浄度は非常に大切ということである。

図5:ジョブショップにおけるセンターセル部とK エンドグループの組立作業と、セル#1の溶接中に空 いた穴。

3.4 空洞製造施設(CFF)における、穴の修復作業

図 6 に、空洞製造施設(CFF)で行った穴の修復作 業の写真を示した。図 6 の左下の写真に示したよう に、純ニオブ片を穴の形に純ニオブ板材から切り出 して、これを穴に埋め込み、再溶接することで穴を 修復した。溶接中に異物が混入することを防ぐため、 溶接の前に、空洞の穴周辺と純ニオブ片を化学研磨 し、溶接によって融解する部分は清浄な状態とした。

図6:空洞製造施設(CFF)における、穴の修復作業の 写真。穴に小さな純ニオブ片を埋め込み、再溶接す ることで穴を修復した。

図6の右下の写真に示すように、穴に埋め込んだ 純ニオブ片を完全に融解させるため、溶接は数回に 分けて行われた。溶接により修復した個所の内面は、 部分的に研磨を行い、滑らかな状態として修復を完 了した。

4. KEK-00 号機空洞の内面処理と縦測定 の結果

図7に、KEK の超伝導空洞テスト施設(STF)にお ける、KEK-00 号機の表面処理作業の写真を示した。 KEK-00 号機に行われた表面処理は、現在の KEK/STF における標準的な内面処理である。電界研磨処理に より、内面を 100 um 研磨した後、脱脂洗浄 (Degreasing)と純水による高圧洗浄(HPR)を行った。 さらに焼鈍(Annealing)を 750°C で 4 時間行い、再 度、最終電界研磨を 20um 行った。その後、ビーム パイプ周辺をブラシにより洗浄し、脱脂洗浄 (Degreasing)を行った後に、純水による高圧洗浄 (HPR)を 7 時間行った。次に、Class 10 のクリーン ルーム内で、縦測定に必要なアンテナ類の取り付け 作業を行い、空洞内を真空引きしながら、120°C で 48 時間のベーキングを行った。

図7: KEK の超伝道空洞テスト施設(STF)における KEK-00号機の内面処理作業の写真。

図8に、KEK の超伝導空洞テスト施設(STF)にお ける、KEK-00 号機の縦測定の結果を示した。左下 の赤い四角のプロットは、温度4Kでの測定データ である。青い丸のプロットは、温度1.7-1.8Kでの 最初のパイモードでの測定データで、最大電界は 29.0MV/m(Q0 = 9.2E9)に達した。性能を制限した原 因はセル#8 でのクエンチだった。白抜きの青丸の データはその時のX線の発生量を表しており、約 70 uSv/h に達した。これは、他の空洞と比較して、 それほど多くない値である。次に、モード解析を 行ったところ、穴の修復を行ったセル#1の加速電 界は42.7 MV/m に到達していることが確認された。 これにより、穴の修理は成功し、空洞性能に影響を 与えなかったことが確認できた。最後に、もう一度、 温度1.5 - 1.8Kにおいて、パイモードで測定を 行った。そのデータが、赤丸のプロットである。最 終的に、最大到達電界は、29.2MV/m(Q0 = 9.5E9)に 到達した。その時の X 線の発生量が白抜きの赤丸の プロットで、約 50 uSv/h に減った。

図8: KEK/STF で行われた KEK-00 号機の縦測定の 結果。加速電界 29MV/m を達成した。

KEK-00 号機は、縦測定後にクエンチが発生したセル#8 の内面を検査したところ、内表面に突起が観察されたため、これを局所研磨して次の縦測定の準備を行っている。

5. 超電導9セル空洞 KEK-01 号機(高調 波 HOM 減衰器有)の製作

KEK-00 号機の縦測定の結果が、最大加速電界 =29MV/m だったこと、修復したセル#1 は最大加速電 界=43 MV/m に到達していたことから、その製作方 法に大きな間違いがないことが確認できた。このた め、我々は、次に高調波 HOM 減衰器を持つ ILC 用の 設計形状の KEK-01 号機の製作を開始した。既に、 セル用のカップのブレス加工を終了し、電子ビーム 溶接の条件出しを行っている。さて、空洞製造施設 (CFF)では、空洞の量産に焦点を絞った研究をして いるため、その観点から、空洞の溶接姿勢と電子 ビーム溶接の際の電子ビームの方向について考察し た。図9は、この考察における2つのパターンを示 している。左の写真は、空洞を水平に設置し、電子 ビームを上から下に向けて溶接している。右の写真 は、空洞を垂直に設置し、電子ビームを水平にした 場合を表している。溶接前にダンベルを重ねて設置 する場合、ダンベル同士の整合部は、設置を容易に するためにインローの嵌め合い形状になっている。 それでも、空洞を水平に設置する場合は、空洞を垂 直に設置する場合に比べて、やや複雑な取扱いが必 要になる。量産においては、作業の単純さは、直接 的にコストに反映されるため、我々は KEK-01 号空 洞の製作では空洞を垂直に設置する方法を選択した。 しかし、この場合、電子ビームを水平の方向にする ため、溶接時の金属溶融部の様相が、電子ビームを 垂直にした場合と比べて違っており、ビームパラ

メーターの探索をやり直す必要がある。

図9:空洞を溶接する時の空洞の姿勢と電子ビーム の方向についての考察。

図10に、空洞を垂直に設置し、電子ビームを水 平にした場合に対応して、KEKの空洞製造施設 (CFF)で行っている電子ビーム溶接の条件出し工程 を示した。

図10:空洞を垂直に設置して、電子ビームを水平 にした場合に対応した、電子ビーム溶接の条件出し 工程。

図10において、工程1、すなわち、電子ビーム が垂直で、テスト用のニオブ板を水平に設置した条 件出しは既に KEK-00 号機の製造前にも行っている。 CFF における新しい電子ビーム溶接機においても、 既に同様の条件出し作業を行っている。図 11 にそ のテスト用ニオブ板の写真を示した。図11の左の 写真は、テスト用ニオブ板の表面、すなわち電子 ビームが入射する面、よって空洞の外側に相当する。 図11の右の写真は、テスト用ニオブの裏面、すな わち、空洞の内面に相当する。空洞の電子ビーム溶 接において、通常の溶接と違うのは、外面から溶接 して、内面をスムーズにする条件が求められること である。

図11:テスト用のニオブ板を用いた電子ビーム溶 接の条件出し。

この工程1を、空洞垂直、電子ビーム水平に対応 して行ったのが、図10の工程2である。さらに、 工程3では、実際に2枚のテスト用ニオブ板を突き 合わせて溶接接合し、工程4では、突合せ部分をイ ンローの嵌め合い形状にして溶接接合をする。電子 ビーム溶接において、その溶接結果を左右する大き な要因として、溶接部品の熱容量がある。図10の 工程5では、実際のダンベル部品を模擬したテスト 用ニオブパイプによって電子ビーム溶接の条件出し を行う。このテストでは、溶接シームが円周に沿っ て1周した後、重なり合う部分の条件についても探 索が行われる。現在、我々は、この工程5の段階を 行っている。この工程が終了した後、実際のダンベ ルの溶接を開始する予定である。

空洞量産のための電子ビーム溶接のための部品ローダーの設計

空洞の製作と並行して、ILC における空洞の量産 を想定して、空洞部品や空洞の溶接を効率的かつ低 コストで行うための部品ローダーなどの設計研究を 行っている。電子ビーム溶接においては、実際に部 品を溶接している時間は、長くても数分である。一 方、溶接部品を電子ビーム溶接機のチェンバー内に 設置して、真空引きを行う作業に約 30 分を要する。 その後、ビームのアライメントと実際の溶接に 30 分を要する。溶接された部品は高温になっているた め、そのまま大気中に搬出すると酸化して超伝道特 性が悪化する。このため、部品の温度が低下するま で待つ必要があり、これに約 30 分を要する。この ため、1 か所の溶接をするたびに部品の出し入れを 行っていると非常に効率が悪く、コストが高くなる。 図12に、ダンベル部品を1回の真空引きで大量に 溶接するダンベル部品ローダーの概念設計図を示し た。図の左にある大量のダンベル保持治具から1つ のダンベルを遠隔動作で掴み取って、真空チェン バー中央の溶接位置に移動し、順次、自動的に溶接 を行っていくことを想定している。今年度末にかけ

図12:量産を想定したダンベル部品ローダーの概 念設計図。

て、この概念設計を元に、小型のテスト機を製作し て基本的な動作の研究を実機で行う予定である。

6. 今後の予定

空洞製造施設では、KEK-01 号機に続き、予算年 度で 2013 年度末までに、KEK-02, KEK-03 と合計 3 台の 9 セル空洞を製作する予定である。この内、 KEK-03 号機については、高圧ガス規定に準拠した 製作を行い、STF でクライオモジュールに組み込ん で試験を行う予定である。

6. まとめ

International Linear Collider (ILC)における 17,000 台の超伝導 9 セル空洞の量産化技術を実現 するため、KEK において空洞製造施設(Cavity Fabrication Facility / CFF)を建設し、全ての機 器の設置を 2011 年 7 月に完了した。この施設では、 材料搬入後に行う空洞製作に必要な装置が1か所に 集約して設置されている。ジョブショップと CFF に おいて溶接作業を行って製作した超伝道9セル空洞 (高調波 HOM 減衰器無)KEK-00 号機を KEK/STF にて 性能試験した結果、最大加速電界 29MV/m を達成し た。これに引き続き、全ての製作工程を CFF 内で行 う超伝導 9 セル空洞(高調波 HOM 減衰器有)KEK-01 号機の製作を進めている。予算年度で 2013 年度末 までに、KEK-01, KEK-02, KEK-03 と合計 3 台の 9 セル空洞を製作する予定である。この内、KEK-03 号機については、高圧ガス規定に準拠した製作を行 い、STF でクライオモジュールに組み込んで試験を 行う予定である。

参考文献

[1] ILC Reference Design Report (RDR), http://www.linearcollider.org/about/Publications/Reference-Design-Report