DEVELOPMENT OF AN RF ACCELERATING STRUCTURE LOADED WITH MULTI-RING MAGNETIC CORES

Yuichi Morita ^{#,A)}, Tatsuya Kageyama^{A)}, Ichiro Kato^{B)}, Satoru Yamashita^{C)}
^{A)} High Energy Accelerator Research Organization (KEK)
1-1 Oho, Tsukuba-shi, Ibaraki, 305-0801
^{B)} R&K Company Limited
721-1 Maeda, Fuji-shi, Shizuoka, 416-8577
^{C)} International Center for Elementary Particle Physics, University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033

Abstract

In order to upgrade the J-PARC rings (RCS and MR) for more beam powers, the existing accelerating structures for both rings need to be improved for better performance especially in the long-term reliability. As a solution for this purpose, we have proposed a new accelerating structure loaded with multi-ring core modules. Each core module consists of three ring FINEMET cores with different radial sizes concentrically arranged and sandwiched between two glass epoxy plates with flow channels grooved on the surfaces. The Fe-based FINEMET cores are to be cooled with the turbulent flow of Fluorinert (chemically inert perfluorinated liquid). Therefore, the cores need neither impregnation nor coating with epoxy resin for anti corrosion. A half-gap cavity loaded with three core modules, which is a minimum configuration for the performance test, is under fabrication. Additionally, a high efficient solid state RF amplifier is under development. Thirty two amplifier modules, each of which is a push-pull class-D amplifier driven by power MOSFET hybrids, are combined to deliver RF power up to 60 kW (peak power with a duty factor of 50%) at frequencies 1.7 \pm 0.2MHz. The amplitude of the RF output can be modulated by changing the voltage across the drain and source of the power MOSFET in proportion to the wave envelope. This paper reports the recent status of our R&D activities.

マルチリング磁性体コア装荷高周波加速構造の開発

1. はじめに

J-PARC リング加速器の加速構造にはファイン メットコアが使用されている。日立金属株式会社に おいて開発されたファインメットは優れた磁気特性 を持つ金属磁性体である。従来のフェライトコア装 荷型加速構造と比べて、ファインメットコア装荷型 加速構造は2倍以上の加速勾配が期待できる^[1]。

しかし、現行のRCS(Rapid-Cycling Synchrotron)用コア水冷式加速構造は長時間運転中 に熱応力によりある種のコアがいくつか座屈し、イ ンピーダンスが低下する現象が発生した^[2]。この種 の問題を含め、加速構造の長期不安定性を解決し、 加速器運転の安定化・増強に資するために、新型の 加速構造を提案し、開発中である。新型加速構造は 以下の2つの特長をもつ。

- ◆ コアをマルチリング形状とし、機能材としてのそれぞれのコアに樹脂含浸等の処理を一切加えない。
- ◆ 冷媒をフッ素系不活性液体であるフロリナー トとし、高い熱伝達係数を達成すべく乱流域 で使用する。

本稿では、コアを3式装荷したハーフギャップ空 胴、及び当該空胴に給電するための半導体高周波電 力増幅器の開発状況について報告する。

2. マルチリングコア加速構造

2.1 加速構造の概要

新しく開発する加速構造にはマルチリング形状の ファインメットコアが装荷される。マルチリングと は、図1に示すように、従来のコアを径方向に3分 割したコア形状である。

図1:マルチリングコア(下)。従来のコア(上) を径方向に3分割している。

[#] yuichi.morita@kek.jp

小、中、大コアから構成され、各コアの巻厚は 81mm とした。これらのコアにはエポキシ樹脂含浸 もしくは防錆コーティング等を一切施していない。

マルチリングコアを流路の彫り込まれた2枚のガ ラスエポキシ板で挟み込んで一体化した構造をコア モジュールと呼ぶ。コアモジュールの断面図を図2 に示す。板はステンレスカラーのみに接し、コアに ストレスをかけることなく組み立てることができる。 板とコア表面の隙間が流路となる。

コア(鉄系合金)の腐食を避けるために、冷媒と してフッ素系不活性液体であるフロリナート(FC-3283)を採用した。液流は乱流域とし、コア表面か らフロリナートへの熱伝達係数を 750Wm⁻²K⁻¹とす る。

3. ハーフギャップ空胴

加速構造の性能試験を行うための必要最小限の構成 として、コアモジュールを3式装荷したハーフ ギャップ空胴を設計・製作中である。

3.1 構造

ハーフギャップ空胴の断面図を図3に示す。

図3:ハーフギャップ空胴の断面図

当該空胴はλ/4 同軸共振空胴の半分の構造をもち、 コアモジュールが3式装荷される。共振周波数は 1.7MHz である。加速ギャップの代わりに可変式真 空キャパシタを使用する。キャパシタには給電のた めにバスバーが取り付けられる。冷却槽端板に設け た流路から冷却槽内へフロリナートが流入する。

3.2 冷却槽端板内流路設計

冷却効率の観点から、冷媒はコアモジュールの内 径側から外径側へ流す。冷媒を冷却槽の内径側から 注ぐために、図4のように冷却槽端板内に流路を形 成する。流路の高さ、幅はそれぞれ、5mm、290mm である。

高速のフロリナートが端板内流路に流入する際に振動が生じるのを防ぐ目的で、配管と端板の溶接部の 内面に丸みを付けてある。

3.3 冷却槽の応力計算

図5に示すように冷却槽は応力の影響を緩和する ために以下2つの特長をもつ。

- 1. 冷却槽内部の直角部に丸みをつけている。
- 2. 応力の集中しない箇所に溶接の位置を定め ている。

図5:冷却槽にかかる応力のy方向成分。冷却槽内 には0.5MPaの圧がかかるとしている。 フロリナートを流した際、0.5MPa の圧がかかる として、冷却槽内の各所に掛かる応力を計算した。 計算結果を図5に示す。引張応力のy方向成分の最 大値は169MPa であり、ステンレスの引張強度 520MPaの約1/3に抑えている。

3.4 冷却系

コア冷却のための1次冷却系にはフロリナートを 循環させる(最大150L/min)。2次冷却系には純水 を流し、熱交換器(最大100kW)によりフロリ ナートを冷却する。

4. 半導体高周波電力増幅器

ハーフギャップ空胴への給電には半導体増幅器を 用いる。半導体増幅器は効率が良く、高圧電源が不 要であり、様々な用途に再利用しやすい。加えて、 モジュール化により保守が容易で維持費も低く抑え られるという利点をもつ。

我々が調達するのは株式会社アールアンドケーが 開発する包絡線同期式ドレイン電源直接変調型完全 D級の 60kW 半導体電力増幅器である。主要パラ メータを表1に示す。

表1:アールアンドケー社製 60kW 半導体電力増幅 器の主要パラメータ

最大ピーク電力	60kW
最大デューティ	50%
周波数	$1.7 \pm 0.2 MHz$
動作	包絡線同期式ドレイン電
	源直接変調型完全 D 級
波形	1.7MHz の正弦波を搬送
	波とし、電源電圧波形を
	包絡線とする波形

ハーフギャップ空胴のシャントインピーダンスの 設計値は 420Ωであるから、可変式真空キャパシタ への印加電圧は 60kW 給電時に約 7kV となる。これ は現行 RCS 空胴と同等の値である。

4.1 DRF1300

電力増幅器に用いるスイッチング素子には Microsemi 社の MOSFET である DRF1300 を用いる。 DRF1300 は 2 つのゲートドライバと 2 つの MOSFET から成るプッシュプル回路である。主要パ ラメータを表 2 に示す。

表2: DRF1300の主要パラメータ^[4]

Switching Frequency	DC to 30MHz
Switching Speed	3 – 4ns
Drain Source Voltage	500V
Continuous Drain Current	30A max.
Drain-Source On State Resistance	\leq 0.24 Ω
Maximum Power Dissipation	$550W \times 2$ sections

4.2 2kW プッシュプル電力増幅器

DRF1300 を用いた 2kW プッシュプル電力増幅器 を開発し、性能実証試験を行った。当該電力増幅器 は包絡線同期式ドレイン電源直接変調型完全 D 級 高周波増幅器である。動作の模式図を図6に示す。

図6:2kW プッシュプル電力増幅器の模式図

ファンクションジェネレータより出力される 3.4MHz の TTL 電圧信号が分周期により2つの 1.7MHz の信号に分けられる。それぞれがドライバ の入力に入り MOSFET のスイッチングが行われる。 MOSFET へのドレイン電源には任意の波形を出力可 能なプログラマブル電圧電源が用いられ、パターン 電圧が印加される。これにより、トランス直後での 出力電圧は、1.7MHz の矩形波を搬送波とし、プロ グラマブル電圧電源のパターンを包絡線とする波形 をもつ。その後、ローパスフィルタにより、搬送波 波形が正弦波となる。

2kW プッシュプル電力増幅器の動作試験のセッ トアップを図7に示す。ドレイン-ソース電圧は DC オフセット 20V に周波数 25Hz の正弦波(135V ピーク、位相は 0 から π)を重畳した波形としてい る。Power 計による測定により、このときの出力電 力は 2kW である。

図7:2kW プッシュプル電力増幅器の動作試験の セットアップ

オシロスコープで測定した 2kW 増幅器からの出 力波形を図8に示す。ドレイン-ソース電圧波形を 包絡線とする出力が得られていることがわかる。

また、出力波形の 1.7MHz 近辺でのスプリアス成 分を測定した結果を図9に示す。プログラマブル電 源や 2kW 増幅器の出力のローパスフィルターによ り、D 級増幅器に特有のデジタルノイズを 64dB 程 度まで抑えられている。

図8:2kW プッシュプル電力増幅器の出力及び、 ドレイン-ソース電圧波形。搬送波の周波数は 1.7MHz とし、ドレイン-ソース電圧は DC オフセッ ト 20V に周波数 25Hz の正弦波(135V ピーク、位 相は 0 からπ)を重畳した波形としている。オシロ スコープの表示では指令値よりもやや低下した 145V が最大値として見えている。

図 9:2kW 増幅器の出力波形の 1.7MHz 近辺でのス プリアス成分。D 級増幅器に特有のデジタルノイズ を 64dB 程度まで抑えられている。

電源電圧に対する 2kW 増幅器の効率の測定を 行った結果を図10に示す。搬送波の周波数が 1.7MHz のときに効率が最大(90%以上)となるよ うに調律がとれていることがわかる。ただし、図1 0は高調波成分を含んだ効率を表している。高調波 成分を除いた効率は 1.7MHz で 83~84%程度と予想 される。

4.3 60kW 電力增幅器

2kW プッシュプル電力増幅器4台を1ユニットと

し、16ユニットの出力を全段においてアイソレー ションをとったコンバイナーで合成していくことに より最大 60kW のピーク出力電力とする。当該 60kW 電力増幅器の主要パラメータは表1に示す通 りである。

図10:電源電圧と効率の関係。1.7MHz で効率が 最大となるように調律がとれていることがわかる。

5. まとめ

マルチリングコアモジュール3式を装荷した不活 性冷媒液冷式ハーフギャップ空胴を設計し、製作中 である。冷媒を流すための冷却槽端板内流路の設計 を行った。加えて、冷却槽にかかる応力を計算し、 応力の影響を緩和した構造設計を行った。

また、ハーフギャップ空胴の大電力試験に向けて 包絡線同期式ドレイン電源直接変調型完全 D 級高 周波増幅器を開発中である。MOSFET を用いた 2kW プッシュプル電力増幅器の出力を全段におい てアイソレーションをとったコンバイナーで合成し、 最大ピーク電力 60kW を得る。

2kW プッシュプル電力増幅器を製作し、性能試験 を行った。その結果、D 級増幅器に特有のデジタル ノイズを 64dB 程度まで抑え、1.7MHz において高 調波成分を含んで 90%以上の効率を得ることができ た。高調波成分を除く効率は 83~84%程度と予想さ れる。今後の開発により、シリコン MOSFET では この方式によって 600MHz までの出力が可能になる と考えられる。

参考文献

- [1] F. Tamura, "高エネルギー加速器セミナーOHO(2010 年)"
- [2] M. Nomura, et al., "Condition of MA Cores in the RF Cavities of J-PARC Synchrotrons after Several Years of Operation", IPAC '10
- [3] Y. Morita, et al., "DEVELOPMENT OF AN RF ACCELERATING STRUCTURE LOADED WITH MULTI-RING MAGNETIC CORES COOLED BY A CHEMICALLY INERT LIQUID", 第8回日本加速器学 会年会
- [4] Microsemi 社 DRF1300 データシート http://www.microsemi.com/en/sites/default/files/datasheets/ DRF1300_E.pdf