DESIGN OF THE SUPERCONDUCTING MAGNET SYSTEM FOR THE SUPERKEKB INTERACTION REGION

Norihito Ohuchi ^{#,A)}, Yasushi Arimoto^{A)}, Kazunori Akai^{A)}, Norio Higashi^{A)}, Masako Iwasaki^{A)}, Haruyo Koiso^{A)}, Akio Morita^{A)}, Yukiyoshi Ohnishi^{A)}, Katsunobu Oide^{A)}, Toshiyuki Oki^{A)}, Masafumi Tawada^{A)}, Kiyosumi Tsuchiya^{A)}, Hiroshi Yamaoka^{A)}, Zong Zhanguo^{A)}, Peter Wanderer^{B)}, Brett Parker^{B)}, Michael D. Anerella^{B)}

^{A)} KEK, High Energy Accelerator Research Organization

1-1 Oho, Tsukuba, Ibaraki, 305-0801

^{B)} Brookhaven National Laboratory

P.O. Box 5000 Upton, New York, 11973-5000

Abstract

The design of the superconducting magnet system for the SuperKEKB interaction region has been developed. The magnet system consists of 8 main quadrupoles, 40 correctors and 4 compensation solenoids. Focusing beams in the interaction region is designed to be performed by the quadrupole doublets on the beam lines. The compensation solenoids integrally cancel the Belle-II solenoid field. As part of the R&D of the main quadrupoles, the QC1E prototype magnet was constructed and cold tested at 4K. The magnet showed the good superconducting characteristics.

SuperKEKB ビーム衝突点用超伝導電磁石システムの設計

はじめに 1.

高エネルギー加速器研究機構(KEK)では、Bファ クトリーマシーンとして稼働してきた KEKB 加速 器のアップグレート^{*} (SuperKEKB^[1])を 2010 年度 より開始している。SuperKEKB では、KEKB で記 録した世界最高の電子・陽電子衝突頻度(ルミノシ ティー)を、ビーム電流を約2倍に高め、ビームサ イズを約 40 分の1に絞り込む (Nano-Beam scheme) ことにより 40 倍高めることを目標として いる。この為、電子・陽電子を最終形状に絞り込む ビーム衝突領域では、超伝導電磁石^[2,3]を全て新しく 作り変える他、常伝導特殊電磁石も超伝導化し、 ビームのサイズを衝突点に於いて 48nm/62nm (陽電 子/電子)まで絞り込む計画である。超伝導電磁石 システムは 2014 年度に製作を完了し加速器への据 付を目指している。本学会では、SuperKEKB ビー ム衝突用超伝導電磁石の設計及び現在進行中の R&D 超伝導電磁石の開発状況について報告を行う。

ビーム衝突点超伝導電磁石システム 2.

図1に設計が進んでいる SuperKEKB 用ビーム衝 突領域(Interaction Region: IR)の超伝導電磁石、ク ライオスタット、Belle-II 検出器を示した。図中左 下部に、参考として KEKB の衝突点用超伝導電磁 石及び Belle 検出器の鳥瞰図を示してある。 SuperKEKB 用超伝導4極電磁石が、KEKB システ ムと比較して大きく異なるのは、KEKB では電子・ 陽電子両ビームが共通の超伝導4極電磁石ボアー内 を通過したのに対して、SuperKEKB では各ビーム に対して個別の超伝導4極電磁石を用意しビーム最 終収束システムを設計している点にある。更に超伝 導4極電磁石はビームを絞り込むために可能な限り 衝突点(Interaction Point : IP)に近づける必要があ り、交差するビームパイプと低温を維持する為のク ライオスタット及び素粒子検出器との境界から非常 に厳しい空間的な制約を受ける。

1つのクライオスタットに組み込む主4極電磁石 は4台となり、全体では8台の超伝導4極極電磁石 を製作する。KEKB と比べて、台数に於いても4倍 となる他、衝突点片側4台の4極電磁石は全て異な る2次元断面設計をもつ。この4極電磁石(OC1、 QC2) に要求される磁場強度を表1に纏めてある。 IP の最も近傍には陽電子ビーム(LER:4GeV リン グ)を収束する為の QC1RP/QC1LP を配置し、その 後方に電子ビーム(HER:7GeV リング)用 QC1RE/ OC1LE を配置する。OC1 の後方には OC2 が各ビー ムラインに配置され、超伝導4極電磁石のダブレッ トを構成しビーム衝突を調整する。表に示す様に OC1RP、LP は鉄ヨークの無い空芯の電磁石である が、他の超伝導4極電磁石は鉄ヨークを持っている。 これら4極電磁石には、4種類の超伝導補正コイ ルが磁石ボアー内に組み込まれる。空芯の OC1RP、 QC1LP の漏れ磁場に対しては、対向する電子ビー ムライン上に漏れ磁場キャンセル用の多極磁場超伝 導コイルを取り付ける。システムに組込まれる補正 コイルの数は、40 個である。

更に、Belle-II ソレノイド磁場をビームライン上 で積分量としてキャンセルするため、超伝導ソレノ イドがクライオスタットに組込まれる。

以下、これらの磁石の詳細について説明する。

#norihito.ohuchi@kek.jp

図1:SuperKEKB ビーム衝突点超伝導電磁石システム。参考として、図中左下に KEKB での Belle 素粒子検 出器及び加速器ビームラインを示した。

表1: ビーム最終収束超伝導4極電磁石

	積分磁場	磁石	補正	漏れ磁場
_	勾配, T	タイプ	コイル	用コイル
QC2RE	12.91	SC+Fe	b_4, a_2, b_1, a_1	NA
QC2RP	10.92	SC+Fe	b_4, a_2, b_1, a_1	NA
QC1RE	26.22	SC+Fe	b_4, a_2, b_1, a_1	NA
QC1RP	22.43	SC	b_4, a_2, b_1, a_1	b_3, b_4, b_5, b_6
QC1LP	22.91	SC	b_4, a_2, b_1, a_1	b_3, b_4, b_5, b_6
QC1LE	26.03	SC+Fe	b_4, a_2, b_1, a_1	NA
QC2LP	10.96	SC+Fe	b_4, a_2, b_1, a_1	NA
QC2LE	14.13	SC+Fe	b_4, a_2, b_1, a_1	NA

3. 超伝導補正ソレノイド(ESR、ESL)

図1に示す Belle-II 超伝導ソレノイドは、1.5 Tの 磁場をビームライン上に発生する。図2に Belle-II 軸上のソレノイド磁場分布(図中赤線)を示した。 この磁場は交差角を持つビームの衝突性能を著しく 劣化させるため、ビームライン上のソレノイド磁場 は積分値としてゼロとする必要がある。ESR と ESL は Belle-II ソレノイド磁場に対して逆向きの磁場を 発生し、ビーム軸上のソレノイド磁場を IP からの 積分値として 0 T·m に調整する。Belle-II ソレノイ ド磁場と ESR 及び ESL が作る逆向きのソレノイド 磁場の合成磁場を図2黒線で示した。図中には超伝 導4極電磁石の位置も示している。QC1RP、QC1LP には夫々最大で-2.56 Tと-2.67 Tの合成ソレノイ ド磁場が印加される。又、Belle-II ソレノイド磁場 と ESR と ESL は、お互いに反発するため、ESR と ESL は検出器から押し出される方向に 3.8 トンと 4.8 トンの電磁力を受ける。

図2:ビーム衝突点でのソレノイド磁場分布。図中 に超伝導4極電磁石の位置を示してある。

図3:超伝導電磁石クライオスタット断面図。 上図:衝突点左側超伝導電磁石クライオスタット、 下図:衝突点右側クライオスタット。

図3に IP 左側(上図)と右側(下図)のクライオ スタット断面を示した。ESL と ESR は太い青線で 示しているが、ビーム光学から必要とされる磁場分 布を作るためにソレノイドは小さく分割されている。 ESR は先頭部のヘリウム容器に設置される ESR1 と 後部ヘリウム容器の電子・陽電子ビームラインに設 置される ESR2-E、ESR2-P からなる。超伝導4極磁 石及び補正コイルは ESR と ESL ボアー内に組込ま れる。

4. 超伝導 4 極電磁石 (QC1、QC2)

8 台の超伝導電磁石のうち、最も IP に近い OC1RP 超伝導 4 極電磁石の断面形状を図 4 に示し た。図2に示した様にQC1RP/LPに印加されるソレ ノイド磁場が 2T を超える為、この磁石は鉄ヨーク の無い空芯磁石として設計されている。QC1RE/LE と QC2RP/LP ではソレノイド磁場を ESR と ESL に より殆どOTまでキャンセルする為、鉄ヨーク付き 超伝導4極電磁石としている。超伝導4極電磁石は 2 層コイルで、ボアー内にはビーム軌道補正用の 4 種類の超伝導補正コイル(8 極、skew4 極、2 極、 skew2 極: *b*₄, *a*₂, *b*₁, *a*₁) が巻かれる。QC1RP/LP は 鉄ヨークが無い為、超伝導4極電磁石から電子ビー ムラインへの漏れ磁場を消去する為に、超伝導キャ ンセルコイルが対向ビームパイプに取り付けられる。 キャンセルコイルは、6極、8極、10極、12極から 構成されている。他の4極磁石には鉄ヨークが付け られるため、このキャンセルコイルは必要ない。表 2に QC1RP/LP の磁石パラメータを纏めた。磁石の 内半径は 25 mm と非常に小さく、設計磁場勾配は 66~68 T/m で、実効磁場長は 0.3372 m である。4 極 磁場に対するエラー磁場が 10-4 レベルであることが ビーム光学から要求されている。この、磁場精度を 達成するために磁石の製作精度は 20µm 以下を目 指している。

表 2: QC1RP、QC1LP 磁石パラメータ

	QC1RP	QC1LP
コイル内半径、mm	25.00	
コイル外半径、mm	30.485	
1極当たりのターン数	25	
積分磁場、T	22.43	22.91
磁場勾配、T/m	66.52	67.94
磁場長、m	0.3372	
設計電流、A	1575.58	1609.30
合成ソレノイド磁場、T	2.56	2.67
コイル内最大磁場、 T	3.79	3.93
臨界電流に対する比(4.7 K)	76 %	79 %
磁石長、mm	416	
誤差磁場 r=1 cm (2D 断面)	$b_6 = 2.55 \times 10^{-5}$	
	$b_{10} = -2.04 \times 10^{-6}$	
誤差磁場 r=1 cm (3D)	$b_6 = 1.96 \times 10^{-6}$	
	$b_{10} = 3.93 \times 10^{-6}$	

加速器運転時の QC1RP/LP コイル内最大磁場は、 夫々3.79 T と 3.93 T まで達する。QC1RP/LP の設計 電流は、磁石運転温度 4.7 K のロードライン上の臨 界電流に対して 76%と 79%に相当する。両磁石とも 20%程度の運転マージンをもって設計されている。

表2に、計算上QC1RP/LP4極磁石に残っている 多極成分を示した。磁石ボアー内半径10mm以下で 多極成分は4極成分に対して3×10⁵以下に抑えてい る。

図4:QC1P 超伝導 4 極電磁石断面形状(左)及び 漏れ磁場キャンセル用超伝導コイル(右)

表 3~5 に他の 4 極磁石の主要パラメータを示した。

表 3: QC1RE、QC1LE 磁石パフメータ				
	QC1RE	QC1LE		
コイル内半径、mm	33.00			
ヨーク外半径、mm	70.00			
1 極当たりのターン数	34			
磁場勾配、T/m	69.48	68.97		
磁場長、m	0.3774			
設計電流、A	1517.3	1506.2		
誤差磁場 r=1.5 cm (2D 断面)	$b_6 = -6.34 \times 10^{-6}$			
	$b_{10} = -3.37 \times 10^{-5}$			

	QC2RP	QC2LP
コイル内半径、mm	53.80	
ヨーク外半径、mm	93.00	
1極当たりのターン数	53	
磁場勾配、T/m	27.76	27.86
磁場長、m	0.4135	
設計電流、A	868.4	871.6
誤差磁場 r=3.0 cm (2D 断面)	$b_6 = 4.73 \times 10^{-7}$	
	$b_{10} = -1.53 \times 10^{-5}$	

表 5: QC2RE、QC2LE 磁石パラメータ

	QC2RE	QC2LE
コイル内半径、mm	59.30	
ヨーク外半径、mm	115.0	
1極当たりのターン数	58	
磁場勾配、T/m	30.59	26.13
磁場長、m	0.4221	0.5407
設計電流、A	1094.8	935.3
誤差磁場 r=3.5 cm (2D 断面)	$b_6 = -2.42 \times 10^{-5}$	
	$b_{10} = -1.37 \times 10^{-5}$	

5. 超伝導4極電磁石プロトタイプの開発

KEK では、4 種類の断面形状の超伝導電磁石に 対してコイル内半径の小さな QC1P と QC1E のプロ トタイプを製作し、励磁試験及び磁場性能を測定す る。QC2P と QC2E についてはコイル内半径が大き い為、製作上の問題は小さいと考えている。

QC1E プロトタイプの製作は、KEK 内の製作装 置・治具を用いて今年 5 月 28 日から開始した。図 5 に製作した超伝導コイル(ダブルパンケーキ鞍型コ イル)を示した。このコイルの製作は、2 週間で完 了した。4 個の超伝導コイルは 4 極コイルに組まれ た後、SUS316LN のカラー(電磁力サポート)によ り固定され、鉄ヨークが取り付けられる。図 6 に完 成した QC1E プロトタイプを示した。磁石の製作に は、全体で 4 週間必要であった。

完成した QC1E プロトタイプは縦型クライオス タットに設置し、液体ヘリウムで冷却し励磁試験と 磁場測定を行った。励磁結果を図7に示した。本磁 石は運転電流を越えた 2157A までクエンチするこ となく通電することができた。2157A は電源リミッ トである。又、この電流値はビームラインに据付後 の運転温度 4.7K での臨界電流に対して約 13%の マージンを持っている。

図5:QC1Eプロトタイプ用超伝導コイル

図6: QC1E プロトタイプ超伝導4極磁石

図 8 に測定された 4 極成分(磁場勾配=G)の磁 石軸に沿った分布を示した。超伝導コイル直線部で の磁場勾配は、通電電流 1560.6A に対して G=70.07 T/m、積分磁場/G dl=26.69 T であった。4 極磁場成 分については加速器の運転を行うのに十分な値を発 生することが出来た。誤差磁場多極成分については、 ハーモニックコイル半径=9.7mmの位置で4 極成分 に対して 6 極成分が a_3 =1.14×10⁴、 b_3 =5.50×10⁴ で ある以外は高次のエラー成分は 1.0×10⁴ 以下で あった。6 極成分については発生原因を検討する必 要がある。

QC1P プロトタイプは、8月6日から製作を始める。この磁石についても液体ヘリウム冷却し励磁試 験及び磁場測定を行う予定である。

図8:QC1E プロトタイプ4 極磁場分布。0 mm の 位置は磁石中心に対応する。

6. まとめ

- SuperKEKB ビーム衝突点領域で使用される超 伝導電磁石システムの設計を行った。超伝導4 極電磁石は、電子・陽電子ビームラインでダブ レットを構成し全数で8 台必要となる。又、 超伝導補正コイルは40 台組込まれる。
- 素粒子検出器 Belle-II のソレノイド磁場をビームライン上でキャンセルする為に4台の超伝導ソレノイドが必要である。

 QC1E プロトタイプを製作し、励磁試験・磁場 測定を行った。励磁特性・4 極磁場強度とも ビーム運転に十分な性能を示した。エラー成 分として 6 極成分については発生原因を検討 する必要がある。

謝辞

本研究を行うに当たり、励磁試験・磁場測定に於 いて三菱電機システムサービス株式会社田中学氏、 株式会社日立プラントテクノロジー遠藤友成氏の高 い技術サポートを受けることができ感謝いたします。

参考文献

- [1] H.Koiso, "Colliders for B-Factories," IPAC'11, San Sebastian, September 2011, WEZA02, p.1931 (2011); <u>http://www.JACoW.org</u>
- http://www.JACoW.org [2] M. Tawada, et al., "Design Study of Final Focusing Superconducting Magnets for the SuperKEKB," IPAC'11, San Sebastian, September 2011, WEPO027, p.2457 (2011); http://www.JACoW.org
- [3] H. Yamaoka, et al., "Solenoid Field Calculation of the SuperKEKB Interaction Region," IPAC'12, New Orleans, May 2012, THPPD023, p.3548 (2012); http://www.JACoW.org