SYSTEMATIC EXPERIMENTS ON THE MISMATCH INDUCED HALO FORMATION USING NON-NEUTRAL ELECTRON PLASMAS IN A UNIFORM MAGNETIC FIELD

Masahiro Endo[#], Hiroyuki Higaki, Kiyokazu Ito, Hiromi Okamoto

Department of Quantum Matter, Graduate School of Advanced Sciences of Matter, Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8530

Abstract

Non-neutral electron plasmas confined in a uniform magnetic field can be used to simulate a beam dynamics in a uniform focusing channel. Here, a halo formation due to a mismatch induced on an electric confinement potential (harmonic potential) is reported. A beam halo is measured with a conventional beam imaging system composed of a phosphor screen and a charge-coupled device (CCD) camera. Obtained results show that the growth rate of a halo is a few tens microseconds in the present experimental condition.

ー様磁場中の非中性電子プラズマを用いた不整合駆動ハロー生成の系統的実験

1. 序論

加速器の用途が広がり、ビームの制御が高度化す るにつれ大強度の荷電粒子ビームが有用となってき たが、これに伴い荷電粒子のクーロン相互作用によ る空間電荷効果の影響が無視できなくなった。加速 器にはビームエネルギー、ビーム強度、ルミノシ ティなど様々なパラメータが存在し、加速器の設計 の段階から決まっているものもある。そのため、加 速器を用いて空間電荷効果の系統的研究を行うのは 得策ではない。また、多粒子シミュレーションを用 いた研究では、粒子各々のクーロン相互作用を計算 するには膨大な計算時間が必要であり、時間の制約 を受ける。

そこで、広島大学ビーム物理研究室では加速器中 の荷電粒子ビームと、荷電粒子閉じ込め装置(トラッ プ)中の荷電粒子群(プラズマ)が、物理的に等価であ ることを用いてビーム物理に関連する研究を進めて いる。[1,2]トラップ中のプラズマはパラメータの変 更が容易であるばかりでなく、実験室系で静止して いるため観測も容易であるという利点がある。した がって、空間電荷効果の性質を調べるのに、トラッ プを用いたプラズマの研究が有用となる。

本研究では、ビーム強度の低下の原因であるビームハロー生成に着目し、一様磁場と静電場(調和ポテンシャル)を用いたトラップ中に非中性電子プラズマを閉じ込め、調和ポテンシャルの大きさを急激に変化させることによって、加速器中のハロー生成の原因となるミスマッチに相当する効果をプラズマに与える実験を行った。[3,4]ここではミスマッチを加えてからの経過時間をパラメータとして実験を行い、ハロー生成率を評価した結果について述べる。

2. 磁場トラップ中の荷電粒子の運動

外部電場がないとき、z方向に一様な磁場Bを持つ トラップ中での荷電粒子(質量m,電荷q)のxy平面 内でのハミルトニアンは空間電荷による電位 ϕ を用 いて

m126389@hiroshima-u.ac.jp

 $H_{sol} = \frac{1}{2m} \left[\left(p_x + \frac{qBy}{2} \right)^2 + \left(p_y + \frac{qBx}{2} \right)^2 \right] + q\phi(x, y; t)$ と表される。これを *xy* 面内において、角周波数 $\frac{qB}{2mc} \ coordinate{coordination} coordination \\ \kappa_z = \left(\frac{qB}{2mc} \right)^2 \ bordermatrix \\ \kappa_z = \left(\frac{qB}{2mc} \right)$

$$H_{sol} = \frac{\widetilde{p}_x^2 + \widetilde{p}_y^2}{2} + \frac{1}{2}\kappa_z(\widetilde{x}^2 + \widetilde{y}^2) + \frac{q}{mc^2}\phi(\widetilde{x}, \widetilde{y}; t)$$

さらに実空間で密度*n*、半径*a*の円形断面を持つ Kapchinsky-Vladimirsky分布を仮定し、その自己場

$$\phi = -\frac{qn}{4\varepsilon_0} (\tilde{x}^2 + \tilde{y}^2) を代入すると$$
 $H_{sol} = \frac{\tilde{p}_x^2 + \tilde{p}_y^2}{2} + \frac{1}{2} \left(\kappa_z - \frac{\kappa_s}{a^2}\right) (\tilde{x}^2 + \tilde{y}^2)$
となる。 ただし、 $\kappa_s = \frac{\pi a^2 n q^2}{2\pi \varepsilon_0 m c^2}$ で、半径 a は次のエ

ンベロープ方程式を満たす。

$$a'' + \kappa_z a - \frac{\kappa_s}{a} - \frac{\varepsilon^2}{a^3} = 0$$

このとき space-charge limit $\kappa_z - \kappa_s / a^2 = 0$ のときに

$$n_{\rm lim} = \frac{\varepsilon_0 B^2}{2m}$$

で与えられる。また、space-charge depressed tune σ 及び bare tune σ_0 はそれぞれ

$$\sigma = \sqrt{\kappa_z - \frac{\kappa_s}{a^2}}, \quad \sigma_0 = \frac{qB}{2mc}$$

で与えられ、tune depressionは

$$\eta = \frac{\sigma}{\sigma_0} = \sqrt{1 - \frac{n}{n_{\rm lim}}}$$

で表される。

上記は 2 次元の場合であるが 3 次元の場合もス ムース近似の下で、調和ポテンシャルによる収束力 で安定な粒子分布として密度一定の回転楕円体プラ ズマが知られている。そのため、進行方向に長い荷 電粒子ビームのみではなく、バンチビームの場合も 同様の議論が成立すると考えられる。

3. 実験装置と実験方法

図 1 に実験装置の模式図を示す。各ソレノイドコ イルに 20 A の電流を流し、z 軸方向に 63 G の一様 磁場を形成する。真空容器内部には内径 70mm のリ ング電極 45 個が設置されており、そのうち電子銃 側の 27 個、閉じ込め領域近傍の 3 個、蛍光面側の 15 個を組として各電極に適当な電圧 V1, V2, V3 を それぞれ印加することにより閉じ込め領域に、

$$\phi \propto (r^2 - 2z^2)$$

で表される調和ポテンシャルを形成する。なお、装置内部は 4×10^{-8} torr 程度の真空度になっている。

実験手順は以下のとおりである。

- 各電極を V1 = -19V, V2 = -10V, V3 = -50V として、 カソード電位が-35V の電子銃から閉じ込め領域に 電子ビームを約 500µs 入射する(図 2 の t < 20µs の 時間帯)。
- 電子を入射している状態で、電子銃側の電極の電 位を V1 = -50V として、電子の閉じ込めを開始す る(図 2 の t = 20µs の時点)。その後電子の入射は止 める。典型的には 10⁸ 個程度の電子が閉じ込め領 域に捕獲される。
- 3) さらに 20 µs 閉じ込めた後、閉じ込め領域の電極 電圧 V2 を-10V から+10V まで 150ns で変化させ、 電子を閉じ込めている調和ポテンシャルに実効的 なミスマッチを与える(図 2 の t = 40µs の時点)。こ の場合、 $\Delta V = 20V$ のミスマッチを加えたと定義す る。また、ミスマッチを印加しない場合は $\Delta V = 0V$ と考える。
- 4) ミスマッチを加えてからの時間をパラメーターとして変化させながら(図 2 の場合、約 40μs)、蛍光面側の電極電位を V3 = 0V とすると電子は磁力線に沿って閉じ込め時の実空間分布を保ったまま

V_p= +8kV にバイアスされた蛍光面に入射する。電 子が蛍光面に入射した際の光は、480×640pixels の アナログ CCD カメラで撮像し、10bit のフレーム グラバーに外部トリガーをかけてデータ収集を行 う。測定される光強度(intensity)は電子密度に比例 しているので、軸方向に積分されたビームプロ ファイルが測定可能となる。ここでの画像データ は S/N 比を改善するために 100 回平均をとると共 に CCD カメラのバックグラウンドノイズも差し引 いたものを使用する。

4. 実験結果

図3および図4に示したのは、それぞれ $\Delta V = 0V$ 、 $\Delta V = 20V のミスマッチを加えてから約40 \mu s後に電$ 子を蛍光面に引き出した際の画像である。図4 は図2 の場合に対応している。ただし、色勾配は各画像データの最大光強度 lp で規格化してある。これらを比較するとミスマッチ印加により径方向にハローが生成されたことが分かる。

図5は、ビームコアの中心を半径r=0とし、光 強度を半径の関数として片対数プロットしたもので ある。黒点は図3のミスマッチなし(ΔV = 0V)の場 合のビームプロファイルで、閉じ込め初期の段階か らガウシアンのビームコアの周辺にハローが生じて しまっている。残念ながら現時点では初期条件とし てハローの全くない状態を実現するには至っていな い。それを実現するのは今後の課題である。

一方、赤点は図 4 のミスマッチありの場合の径方 向分布を示している。これらの図から明らかなよう にミスマッチを印加することによりビームコア周辺 の半径 30 ~ 60 pixel の間にハローが形成されている ことが分かる。ハロー生成量の評価に当たっては、 ミスマッチの有無に依らず光強度が変化していない r > 60 pixel の領域を無視し、r < 60 pixel までのデー タ点に対し次式のようなフィッティングを行った。

$$f(r) = f_{core}(r) + f_{halo}(r)$$
$$= n_{core} \exp\left(-\frac{r^2}{\sigma_{core}^2}\right) + n_{halo} \exp\left(-\frac{r^4}{\sigma_{halo}^4}\right)$$

$$H_{w/o} = \int_0^{\infty} 2\pi r f_{halo}(\mathbf{r}) d\mathbf{r}$$

の差をとり、ミスマッチなしの場合の 100pixel まで の光強度の和 $N_{w/o}$ で割ることによりハロー生成率 $P = \frac{H_w - H_{w/o}}{P}$

$$P = \frac{N_{w/o}}{N_{w/o}}$$

を定義した。

図 6 はビームプロファイルの最大光強度 Ip とハ ロー生成率Pを、ミスマッチを印加してからの時間 の関数としてプロットしたものである。黒丸はミス マッチなし($\Delta V = 0V$)、青丸はミスマッチあり($\Delta V =$

20V)の Ip を示し、赤四角がハロー成長率である。

結論として、ミスマッチを印加した場合は印加し ない場合に対して lp が急激に下がり、それとともに ビームコアの一部の電子は径方向に発散しハローが 生成されたことが分かる。さらに、今回の実験条件 では、ハローは 20µs 弱の時間スケールで成長して いることが明らかになった。実際の実験では入射条 件を少し変えることによりミスマッチを加えてもハ ローがほとんど生じないようにすることも可能であ り、実際にハロー生成の主要因となっている物理的 なパラメーターを特定することが今後の重要課題で ある。

謝辞

本研究は一部、KEK 大学等連携支援事業、ならび に日本学術振興会科学研究費補助金の支援を受けて いる。

5 参考文献

- H.Okamoto, H.Tanaka., "Proposed experiments for the study of beam halo formation", Nucl. Instr. Meth. A 437 (1999) 178.
- [2] H.Okamoto, Y.Wada, R.Takai, "Radio-frequency quadrupole trap as a tool for experimental beam physics", Nucl. Instr. Meth. A 485 (2002) 244.
- [3] K. Fukata, H. Higaki, K. Ito, M. Kuriki, H. Okamoto, "Development of a beam imaging system for a solenoid trap", Proceedings of the 5th Annual Meeting of Particle Accelerator Society of Japan, 451 (2008).
- [4] H.Higaki, S.Fujimoto, K.Fukata et al, "Mismatch induced oscillations of space charge dominated beams in a uniform focusing channel", Proceedings of IPAC'10, 1336 (2010).