Target Manufacturing and Evaluation of The Optical System for The J-PARC OTR Beam Profile Monitor

Satoru Otsu ^{#,A)}, Masaki Tejima^{B)}, Yoshinori Hashimoto^{B)}, Toshiyuki Mitsuhashi^{C)} ^{A)} Mitsubishi Electric System & Service Co., Ltd. 2-8-8 Umezono, Tsukuba, Ibaraki, 305-0045 ^{B)} KEK/J-PARC 2-4 Shirakata Shirane, Tokai, Naka-Gun, Ibaraki, 319-1195 ^{C)} KEK 1-1 OHO, Tsukuba, Ibaraki, 305-0801

Abstract

Next January, an OTR (Optical Transition Radiation)-beam profile monitor [1] will be installed at the 3-50 GeV beam transport in J-PARC. Targets for OTR generation are made with thin metal foils, such as aluminum and titanium. Uniformly foil applying method was studied, and then un-flatness of a tested 10-micron titaninum foil was within 30 micron, covering circle area of 90 mm diameter. Optics for OTR light observation employs an Offner type relay-optics consists of two 300mm-diamiter concave mirrors and a 200 mm-diameter convex mirror. On it, focal property and some aberration were investigated for comparing design, and then fine alignment brought large uniformly viewing field of 200 ^H and 90 ^V in mm on each center line. These technics for target manufacturing , and for fine optics measurement and its devices alignment are discussed in this paper mainly.

OTR プロファイルモニターのターゲットの製作と光学系の評価

1. はじめに

OTR ビームプロファイルモニター(図 1)は,ター ゲットフォイルで生成される OTR 光を計測するモ ニターである.本装置では、ターゲットのビーム衝 突点のバックワード方向にオフナー光学系を置いて いる.光のエンベロープは白線で示してある.ター ゲット真下に位置するスクリーンにターゲット像を 結像する.スクリーンは、拡散光に変換する役割を もち.スクリーンの像はミラーを介して大気中の計 測光学系(2次光学系)に導かれる.

ターゲットの金属フォイルは、できるだけ薄く、 平坦であることが望ましい.われわれは、ビームロ スの観点から 10 ミクロン厚みのアルミニウムまた はチタンのフォイルを候補にしている.計測する視 野径は、光学系の設計から 110 mm である.フォイ ルの非平坦性は,結像の形状の偏差が 0.33 mm (光学系の設計分解能 1 mm の 1/3) とした場合に, 50µm 以下であることが要求される.実機でのター ゲットフォイルの全体のサイズは,150 mm の直径 としている.これはビームパイプ内径(160 mm)とほ ぼ同じサイズであり,大強度ビームに何らかの変動 があった場合でもロスを発生させないためである. 現在は貼り付けの試験段階であり,120 mm の矩形 サイズでの均一なフォイル貼り付けの試験を行って いる.

2. ターゲットフォイル

2.1 ビームコア用ターゲットフォイルの貼付け

50µm 以下の非平坦性を目標にして,次の2段階の貼り付け方法を試験した.

方法 1.

平坦なガラスの上にクリーンルーム用の静電防止 紙(AS スタクリン:桜井)を敷き、10 μm⁴、150× 150 mm²のアルミフォイル(純度 99.5%)を載せる. その上にアルミ製の 10 mm⁴のフレームを載せる. これは表面の非平坦性が 20 ミクロン程度であり, 中央に120 mm 直径の丸穴(ビームホール)を開け てある.ウェイトは、3 方の隅に置き、残る 1 方の 隅のフォイルにその面の接線方向に適度なテンショ ンをかけてから、その直上のフレームにウェイトを 載せて仮固定する.次に、別の隅のウェイトを外し て同様の操作を行う.この手順を繰り返し行いなが らウェイトを 250g から 1kg まで重くしてやる.フ レームとフォイルの接着には、ウレタン系の接着剤 をアセトンで希釈し、面相筆に含ませてフレームと の隙間をなぞることで行う. 毛細管現象により,端 部から 10mm 程度の範囲にわたって接着剤を浸透 させることができる.

図 2. ウェイトとテンションをかけてのアルミフォ イルのフレームへの貼り付け時の様子.

方法 2.

次に, 方法1で張り付けたフォイルの内側に角に R をつけたリングを載せて荷重する(図 3). この ようにすることで, 方法1で残ったたわみをさらに 少なくすることができる.

図 3. 方法 1 で張り付けたフォイルの内側にさらに リングを載せ一様に荷重する方法 : この例ではリ ング,ガラス,分銅で 300g 程度荷重している.

図 4. レーザー変位計を用いた 2 次元平坦性測定装 置

2.2 平坦性の測定

測定精度±7.5µm のレーザー変位計(KEYENCE IL-S025)を用いて、フォイルの平坦性を測定している(図 4).フォイルは実機の使用条件と同じく 垂直に置き、フォイル自身を2次元でスキャンする. フォイルに対向する変位計は不動である.チタン フォイルの測定結果を図5に示す.方法1では下部 に 60 µm 程度の非平坦性が残っている、方法2を 追加することで、内径90mmの範囲では30µm 以 下の変位になった.図(b)では、ほとんどたわみの無 い状態となっており、テンションをかけて平坦性を 持たせる方法のほぼ限界になったと考えられる. 残っているのはフォイル自身の歪みなどではないか と考えている.

図 5. フォイルの平坦性:左縦軸は,測定開始点の Y座標[mm]を示し,実際の変位は右縦軸[µm]で表し てある. (a) 方法 1,(b)方法 2 のそれぞれの結果.

3. Offner 光学系の調整と評価

Offner 光学系[1]の概念を図 6 に示す. ターゲットフォイルで発生した OTR 光を対称な位置にある スクリーンに結像させる. 原理的に球面を基本にした対称な光学系であるために,収差も比較的小さく 良好な結像性能を持っている. 設計の視野と解像度 は,それぞれ 100,1 mm 程度である.

3.1 光学系の調整方法

製作した Offner 光学系を図7に示す,2枚の凹面鏡 (ϕ 300 mm,r 500 mm:設計値)と1枚の凸面鏡(ϕ 200 mm,r 250 mm:設計値)は,基材のパイレックスガラ スを研磨し,その表面全体にアルミコートし導電性 を持たせている.ビームや2次電子によるチャージ アップを防ぐためである.透過波面精度は8/ λ であ る.精度良く配置するために,図のように矩形のミ ラーホルダー(寸法精度:0.1mm)に収めている.光学 系要素の配置調整では,まず,凸面鏡を外した状態 で,凹面鏡2枚(上鏡:凹U,下鏡:凹B)の配置 を決定し,両者の焦点位置にずれが無いように調整 し,次に凸面鏡を取り付けその位置を調整した.

図 6. Offner 光学系概念図

図 7. ミラーボックスと Offner 光学系アッセンブリ

3.2 凹面鏡の位置調整と焦点距離の測定

2 枚の凹面鏡は、図にある球心からの距離(R) 500mmの円弧上に載せることが Offner 光学系のポ イントである. 鏡の製作段階に得られた R は 495 mm であり、設計値とのズレは 1%であった. ミ ラーホルダーでは、凹面鏡のミラーベースに角度と 位置精度を持たせ、このベースに平行となるように ミラーをセットすることで **R500** の円弧に沿ってミ ラーが配置されるようにしてある.

次に、図8のようにレーザー墨出し器の縦ライン を用いて、2枚の凹面鏡にレーザー光をスイープし、 その焦点位置のファインな調整を行った.図(b)にあ るように上下のミラーからの反射光の焦点スポット は、アクリルターゲット上で同時に焦点を結び、両 者は光学対称平面(ミラーボックスの中央)を示す. ファイン調整では、ミラー固定部にあるそれぞれ 4 か所のあおり調整機構をわずかに変位させることで 理想的な焦点の状態となった.メディアンプレーン 上にあるハイトゲージのエッジに対して対称な位置 にあることから、両ミラーの関係が対称であること も確認した.

図 8. レーザー墨出しを用いた凹面鏡の位置調整. (a) 垂直方向レーザーによるスイープ,(b)アクリル ターゲット上での入射レーザーラインと2つの凹面 鏡の焦点スポット

焦点位置を正確に計測する方法としては、精度の 高い Foucault のナイフエッジ法[2]を用いた.測定 原理は、図9である.焦点の前方と後方に置いたナ イフではシャドウの位置が正反対になる.ナイフが 丁度焦点に来るとき、全波面がシャドウとなる.ナ イフの厚みは 0.1mm 以下であるので、正確な焦点 位置がわかる.

図 9. ナイフエッジ法により焦点 F をもつ凹面鏡の 波面の測定:ナイフエッジを a (焦点より後方)に入 れるとき,図の上側からナイフのシャドウが現れ る.焦点前方の a の場合は、シャドウは逆になる.

ナイフエッジ測定器とセットアップを図 10 に示 す.光源には 50 ミクロンのピンホールを用い,カ ミソリのブレードを精密位置調整できる機構を持っ ている.測定は,エッジの直後方に目(またはレン ズ付カメラ)を位置させて,その焦点を凹面鏡の鏡 面に合わせる.図のセットでは凹 U と凹 B を同時 に計測することができる.この方法では,上下の凹 面鏡の焦点位置は,0.5mm 程度の違い程度で一致 していることを確認した.

図 10. ナイフエッジ法により鏡面波面の測定と焦点 位置の測定, (a) セットアップ, (b) 測定ヘッド

3.3 ロンキーテスト[2]

凹面鏡の収差による波面のエラーを評価するため に、ロンキーターゲットによる試験を行った.使用 したロンキーターゲットのラインピッチは 5 line/mm である.図 10 のナイフエッジセットのナ イフを外し、ターゲットをセットする. CCD カメ ラの焦点は凹面鏡のやや手前に来るように(前方主 点の近傍)セットすることでターゲットにおける回 折と干渉のロンキーグラムを見ることができる(図 11).得られた像は、ラインが直線で等間隔に並ん でいることから顕著な球面収差や非点収差がないこ とを確認した.凹Uでも図 11 同様であった.

図 11. 凹 B のロンキーグラム

3.4 グリッドパターンテスト

3.3 までの方法で凹面鏡の良好な対称性と収差の 少ないことを確認した後、凸面鏡をとりつけての Offner 光学系としての総合試験を、グリッドパター ンを用いて行った.10mm グリッドのターゲットを、 スクリーン位置にセットし、フォイルターゲット位 置近傍でトレース紙ターゲットに結像させた.結像 位置は、デザインより30mm 程度短いことがわかっ た.これは特に問題にはならないが、その理由とし て研磨した鏡の厚みやその焦点距離の設計値からの ずれなどが効いていると考えている.また焦点深度は、5 mm 程度と非常に浅く、これは大きな開口をもつためである.

光学系の結像性能(図 12)は良好であることがわ かった.視野は、写真に写っているスケールの mm の刻みのラインが識別できるかを判断した場合は、 次の結果となった.十字位置が光軸の中心であり、 その中心を通る縦軸と横軸上においては、垂直方向 に+30/-60 mm、水平方向に±100 mm にわたる良好 な結像の視野であった.垂直方向の+側が 30mm とやや小さいが、中心平面から距離の遠い側(図の 上側)にわずかなボケが発生しているためである. 300mm の大きな鏡を使用するため Offner 光学系の 設計における分解能は、1mm としていることから、 その精度とした場合の視野は、図からわかるように、 垂直上側でも 50 mm 近くまでの視野は持っている といえる.

図 12. グリッドパターンテスト

4. まとめ

10 µm 厚みのチタンフォイルのフレームへの貼り 付け試験では、リング状の荷重を追加することで平 坦性を増す工夫がなされ、90mm 直径の円領域で 30 µm 以下の非平坦性を実現した. 今後は、実機に 向けて、120mm の領域の平坦性を確保する試験を 行う予定である.

Offner 光学系では,光学系を構成する凹面鏡と 凸面鏡のファインな調整が行われ,設計の分解能 1 mm を実現し,100mm 直径領域以上の視野がある ことを確認できた.

参考文献

- [1] M. Tejima, et al., These Proceedings.
- [2] D. Malacara, Edited, "光学実験・測定法 I", 2010, アド コム・メディア.