## [12P-05]

# Status of Linac Design for Fusion Neutron Irradiation Facility – IFMIF

M. Sugimoto

Japan Atomic Energy Research Institute (JAERI)

Tokai-mura, Ibaraki 319-1195, JAPAN

### Abstract

The conceptual design study of IFMIF has been completed at the end of 1999 by employing a reduced cost version and the staged construction scenario to achieve the final objectives to supply 500 cm<sup>3</sup> irradiation volume with  $10^{14}$  (/cm<sup>2</sup>/s) neutron flux. In the next three years, some essential technologies of key components are investigated to confirm the conceptual design. For the accelerator system, the long-term operation of high-current D<sup>+</sup> injector, the cold model of coupled cavity cw-RFQ for 175 MHz, the heat removal from Drift Tube in cw-DTL, and some RF system components are selected as the tasks carried out by the international collaborations.

## 核融合中性子照射施設 - IFMIF のためのリニアック設計の現状

## 1.はじめに

IFMIF「国際核融合材料照射装置(International Fusion Materials Irradiation Facility)」は、核融合炉 のための材料開発に不可欠な 10<sup>14</sup>(/cm<sup>2</sup>/s)以上の 14MeV(相当)中性子をD-Li反応で発生させて照 射試験を行う装置である[1](図 1 に示すようにタ ーゲットにもっとも近い場所では材料原子が年間 あたり 20~50 回弾き飛ばされる)。1995 年に始ま った概念設計は国際エネルギー機関の国際協力に 日米欧露が参加し 1999 年末をもって完了した[2]。



図 1 D-Li 加速器型核融合強力中性子源の概念

本加速器の最大の特徴は、大強度の中性子を多 くの試料に均等に照射できるようアンペア級 40MeV 重陽子を連続で加速することが要求され る点にある。概念設計では、稼働率を向上させる ためにハンズオンでの保守が不可欠との考えから、 ビームロスによる放射化を最小限に抑えるための いくつかの設計規範を採用した。

- 1) 所要ビーム電流を複数の加速器モジュールで 分担して供給する(125mA モジュールを単位と し、2 台もしくは4 台で構成する)。
- 2) 機器の放射化を避け、ターゲット表面に矩形一 様なビームスポットをつくるため.1 mm・mrad (normalized, rms)以下の低エミッタンスを目標と

する(175MHz RF リニアックを採用、ただし 150MHz 程度まで下げる可能性も同時に検討)。

- 3) 稼働率 88%を達成するため RAM (Reliability, Accessibility & Maintainability)解析を重視し、機 器構成に反映させる(イオン源数、RF システム)。 概念設計のまとめとして、基本案コスト(約840 億円)を削減し、かつ段階的に建設が可能な代案 の要請があり、最終的に図2に示すような形になった(約500億円)。大きな変更としては
- (1) 2 個所あったターゲット及びビーム調整ダン プの3ステーションを1個所にまとめた。
- (2) 加速器モジュール数は2とし、水平面上にレイアウトして占有容積を圧縮した。
- (3) 2つの加速器モジュールは別々の時期に建設 可能とし、さらに第1モジュールの RF 源を当 初 50mA 加速分だけ建設することにした(第1 期のコスト約 300 億円)。

このような 50/125/250mA の 3 段階建設により、 最終目標である重照射の前に候補材の絞り込みや 工学データ取得のための目的別照射の先行実施が 可能となった。



図 2 125mA 加速器モジュールのレイアウト

#### 2 . RFQ

IFMIF RFQ の主な仕様は 175MHz、q/m=1/2、入 力/出力エネルギー 0.1/5MeV(基本設計は 8 MeV)、 結合空洞方式(全長~8m)、エミッタンス 0.4 mm・ mrad (normalized, rms)であるが、重要なのは D ビ ームを加速する点である。5 MeV を越すと(d,n)反 応による大量の中性子発生が顕著になり、より低 いエネルギーでも材料表面に吸着した D との D+D 反応中性子が発生するため長期間運転後の 保守性を保つために極限までビームロスを抑える 必要がある(図 3 はビームシミュレーション例)。

ビームロスの原因は(1)入射器からのビームの ミスマッチ、(2)空洞内電場の不均一性や時間的乱 れ、(3)DTLへのビーム引渡しのミスマッチがあり、 それぞれ設計上の考慮が必要となる。基本仕様の 8MeV 出力は後述するように DTL のビームダイナ ミクスに沿った磁場強度設計要求から導かれたも のであり、コスト削減に伴う設計の合理化検討の 中でシャントインピーダンスが低い RFQ は、もっ と低めの出力で要求ビーム性能が達成できること が望ましい。いずれにしても RFQ 全長は単独空洞 でつくるには長過ぎるため、LANL の APT/LEDA で開発された結合空洞方式[3]をとる。ただし、そ れらは 350MHz、全長~8m、陽子用である。周波 数のスケーリングだけからいうと、波長が2倍な ので十分達成可能なように見えるが、ハイパワー マシンであるため結合空洞全体の長さを12mとす ることにはリスクがあり、ビーム損失による放射 化が発生した際の対応も DTL に比べ困難である。

プロトタイプ試験ではインテグレートした状態 での性能保証が重要であり、最短期間で開発目標 を達成するにはフルプロトタイピングとすべきで あり、開発費も含めた全体コスト圧縮のためにも RFQ サイズは縮小する必要がある。



図 3 IFMIF-RFQ のビームシミュレーション結果

#### 3. DTL/SCL

概念設計では「既存の確立した技術に基く」方 針が適用され、常伝導 DTL が基本案として採用さ れ、エミッタンス劣化の程度が低い FoDo 収束構 造を採用した。ボア径は 3cm としたため、図 4 に示すように 175MHz の FoDo 構成で必要な Q 磁 場強度を達成するには入射エネルギーは 8 MeV 程度が要求される。合理化設計変更で 5 MeV に下 がることへの対策として(1)FoFoDoDo 構造に変更、 (2)ボア径も縮小、が考えられるが、図 5 に第 1 タ ンクに FoFoDoDo 構成を採用してビームシミュレ ーションを実行した結果を示す。





概念設計当初から超伝導リニアックは DTL の 有望な代案として検討され続けてきた。低ベータ 空洞が必要なため、図 6のような /4 空洞の2ギ ャップ方式[4]をはじめとするいくつかのタイプ が提案されているが、コスト的に引合うためには RFシステムをどう簡略化できるかが鍵となる。そ の性能を引き出すには空洞ごとの独立 RF 制御が 可能な方式が望ましく、将来、固体素子アンプで 100kW クラスのものが低価格で供給されるよう であれば、DTL に置き換える可能性は大いに高ま る。



図 6 IFMIF-SCL の quarter-wave 空洞

#### 4 . R F システム

段階的建設に沿った設計では、最初の DTL タン クを除く全ての加速空洞タンクについて、2 台の RF 源ユニットから同時に RF を供給する必要があ る。ユニット当たり最大1MWのRF出力はRFO、 DTLそれぞれ4ドライブ、2ドライブに分配する。 このようなマルチドライブ構成では、各の干渉効 果を考慮した解析が必要であり、故障時の対応に ついても、1 ユニットだけの故障ならビーム電流 を下げて運転継続も可能であるため、いくつかの シナリオが考えられる。また、合理化設計では最 終段アンプの後にあったサーキュレータを除くこ とにした。最終段 RF アンプは Thomson の DiacrodeTH628 が 200MHz で 1 MWcw 連続 8 時間 運転に成功しており、IFMIF RF システムに適用可 能と考えられている。図7にシステムブロック構 成を示す(コストはプロトタイプで約2.2M€5])。



図 7 IFMIF 加速器の RF 源システム

#### 5.入射器・ビーム輸送

これらの要素はリニアックとのビームの受渡し を行うフロントエンドとして全体の稼働率を維持 するために性能の向上と設計の最適化が重要な部 分である。合理化設計の現状は、概念設計の基本 方針を踏襲しているが、移動式のビームダンプや ビーム診断技術の改良とあわせて設計の詳細化が 残された課題である。

### 6.要素技術確証

概念設計では基礎技術としては既に確立したも のをベースにしたものの、現実に総計10MWのビ ームを取扱っている例は無いため、本当に既存技 術の延長線上のものかどうかをできるだけ早い時 期に確認しておく必要がある。そのため、2000年 からの3年間を要素技術確証フェーズとし、各構 成要素の中でも重要性の高い(1)入射器性能、 (2)RFQ コールドモデル、(3)DT 除熱、(4)RF コン ポーネントについて、最終性能実現への見通しを 得るための技術開発を実施する。加速器を含む各 サブシステムについて国際分担で協力するととも に、国内では大学・原研が共同で開発にあたる

#### 7.まとめ

核融合炉という概念を抱く限り常に材料問題が 浮かび上がる。長年にわたる比較検討の結論とし て、重陽子加速器を用いた中性子源が現実的かつ 最適な選択である。問題は必要とされる10MWビ ームを安全、安定に長期間供給できるシステムが 構築できるかという点にある。安定性の面からも っとも懸念されていた入射器、RFシステム共に最 近の技術の進歩により十分に実現を見通せる段階 に来ており、着実にプロトタイピングを進めるこ とにより概念設計で求めた仕様達成が可能と考え られる。その意味で、今年から始まる要素技術実 証そして、その先の工学技術実証における開発内 容を精査していくことが極めて重要である。

#### 参考文献

 T.Kondo, H.Ohno, R.A.Jameson and J.A.Hassberger, Fusion Eng. Design, 22, 117 (1993).

[2] IFMIF–CDA Team, IFMIF International Fusion Materials Irradiation Facility Conceptual Design Activity Final Report, ENEA Frascati Report, RT/ERG/FUS/96/11 (1996); IFMIF Conceptual Design Evaluation Report, Ed. A.Moeslang, FZKA 6199, Jan. 1999.

[3] L.M.Young, Proc. 1994 Int. Linac Conf., Tsukuba, 1994, p.178.

[4] Y.Tanabe, et al., Fusion Eng. Design, 36, 179 (1997).

[5] Fusion Neutronincs Laboratory, JAERI-Tech 2000-014, pp.186-187.