[12P-39]

DEVELOPEMENT OF IEGT SWITCH FOR A KLYSTRON MODULATOR

K. Okamura^{*)}, C. Yamazaki, Y. Ohnishi^{A)}, T. Hori^{B)} and H. Hanaki^{B)}

Toshiba Corporation Information and Industrial Systems & Services Company 1, Toshiba-cho, Fuchu-shi, Tokyo, 183-8511 JAPAN

> A)Toshiba Corporation Power Systems & Services Company 8, Shinsugita-cho, Isogo-ku, Yokohama, 235-8523 JAPAN

B)Japan Synchrotron Radiation Research Institute (JASRI/Spring-8) Koto 1-1-1, Mikazuki-cho, Sayo-gun, Hyogo, 679-5198 JAPAN

Abstract

To replace a thyratron which is used in a klystron modulator, we have developed a high voltage switch utilizing IEGT which is recently developed semiconductor power device. We confirmed that an IEGT device successfully conducted current of almost 6 kA and that the IEGT switch had a satisfactory performance.

クライストロンモジュレータ用IEGTスイッチの開発

1. はじめに

クライストロンを駆動するパルス変調器のスイ ッチとしてはこれまでサイラトロンが用いられて きた。しかしサイラトロンは放電管であるため寿命 や品質の偏差が問題となりまた経年変化を補正す るためにリザーバ電圧を調整する必要があるなど 保守上の問題がある。そのためこれを半導体で置き 換えるべく IEGT を用いたスイッチを開発した。

2 . I E G T

IEGT (Injection Enhanced Gate bipolar Transistor)は近年になって開発された半導体パワ ー素子であって高速のスイッチングが可能であり かつ高い定格電圧でもエミッタ側からの電子注入 促進作用によって低い飽和電圧が維持されるとい う特徴がある^[1]。

プレーナゲート型IEGT (P-IEGT)の模式断 面図とキャリア密度分布を図1に示す。P-IEGT は 従来型素子のIGBT (Insulation Gate Bipolar Transistor)とよく似た構造を持つ素子であり機能 的にはMOSFET とバイポーラートランジスターの 複合素子である。したがって電界制御による高速ス イッチング特性とバイポーラ通電による大電流密 度を両立させることができる。さらに IEGT ではゲ ート幅 Wg が IGBTに比べて広いのが特徴である。 IEGTではゲート幅 Wg が広くなることによりコ レクタ側から注入されたが直接エミッタに通り抜 けにくくなり n 層のエミッタ側に正孔が蓄積され そのことによって電気的中性を維持しようとチャ

図 1 プレーナゲート型 I E G T の模式 断面図とキャリア密度分布

ネルを介して電子の注入が促進される。その結果、 エミッタ側のキャリア密度が増加し結果的にGT Oサイリスタと類似のキャリア密度分布が実現し て低い飽和電圧が得られる。

IEGT は圧接型パッケージのものとパワーモジュ ール型パッケージのものが開発されているが今回 は低インダクタンスでパルス通電に適した圧接型 パッケージのものを採用した。

図 2 に今回用いた IEGT 素子 (S6X02(P))の外観 を、表 2 に主な定格を示す。

なお今回使用した素子は特別にキャリア寿命制 御を抑制しコレクタ・エミッタ間飽和電圧を低くし

^{*)} K. Okamura, 042-333-2308, katsuya.okamura@toshiba.co.jp

図 2 IEGT (S6X02(P))の外観

て通電損失が小さくなるようにしたものである。

	· · ·		
項目		値	単位
コレクタ・エミッタ間電圧		4500	V
コレクタ電流	DC	750	А
	1 m s	1500	Α
コレクタ・エミッタ間飽和電圧*1		2.6	V
ポスト直径		85	mm
最大外径		120	mm
厚さ		26	mm
圧接力		31.5	kN
「「「」」「「」」」」		1400	g

表1 IEGT (S6X02(P))の主な定格

*1 Ic=750A

3.素子単体の短パルススイッチング特性

最初に素子単体でのスイッチング特性を調査した。評価回路は図3に示した PFN 回路である。本 PFN 回路は特性インピーダンス 0.8 の PFN を3 並列にしたものである。素子評価実験においては充 電電圧と PFN の並列数を変えて IEGT に流れる電 流を調整した。

スイッチング波形の例を図4に示す。図4では スイッチング時のコレクタ・エミッタ間電圧(VCE) とコレクタ電流(IC)を示している。またVCEに

ついては拡大波形も合わせて示している。

またこの電圧・電流波形より IEGT の損失を評価したところ 3.7J であった。これは充電エネルギーに対して約7%であり、効率に換算すると 93% であった。

図 5 に充電電圧を変えたときの電流ピーク値と オン電圧の変化を示す。 この結果本試験パラメー タの範囲では電流が充電電圧にほぼ比例して増加 し、またオン電圧の変化も小さいことから IEGT が 健全に動作していると判定できる。

図 5 電流ピーク値、オン電圧の 充電電圧依存性

図3 素子単体スイッチング特性評価回路

4.IEGT スイッチ

4.1 定格

表2に今回製作した IEGT スイッチの設計定格 を示す。

表 2 IEGT スイッチの正格			
項目	値	単位	
出力パルス電圧	12.5	kV	
出力パルス電流	1248	Α	
出力パルス幅	10	μs	
最大繰り返し	60	pps	
出力インピーダンス	10	Ω	
PFN 充電電圧	25.0	kV	

4.2 設計

表2よりスイッチに印加される電圧は最大 25kVである。IEGT 素子単体の最大電圧は4.5kV であるがこれは絶対最大定格であり実際の設計に あたっては直流連続印加に対する寿命、分圧アンバ ランス、ターンオン過電圧などを考慮する必要があ り今回は直列数を10として素子1個あたりの平 均電圧が2.5kVとなるようにした。

定格運転時の素子1個あたりの発熱は大型の圧 接型パワーデバイスとしてはきわめて小さな値で あり自冷とすることも可能であったがフィンを極 力小さくすること及び将来的なパワー増強も考慮 して強制風冷方式とした。

図6にスイッチの外形を示す。

図6 スイッチの外形

5.試験結果

5.1 電圧分担

図7に直流印加時ととスイッチング時の各素子 の分担電圧特性を示す。ここで不平等倍率とは

不平等倍率 = 個々の素子の最高分担 電圧

平均分担電圧

で定義した。直流分担電圧、過渡分担電圧ともに均 等であることが分かった。

5.2 スイッチング

図8に模擬負荷を接続し、定格電圧を充電した時 のスイッチング波形を示す。

電流の立ちあがり時間は 750ns であり十分サイ ラトロンを置き換えうるほどの性能が得られるこ とが確認できた。なお図6において電流波形の立下 り部においてピークがあるのは試験に用いた PFN の固有の特性でありスイッチに起因するものでは ない。

図 8 定格電圧印加時のスイッチング波形 (2µs/div)

6.まとめ

新しく開発された半導体パワーデバイス IEGT を用いてクライストロンモジュレータ用スイッチ を試作し良好な特性が得られることを確認した。本 スイッチは現在 Spring-8 の試験用モジュレータに 組み込み長期運転評価を行っている。

^[1] 松田:「IEGT の開発状況」、電学誌、118 巻、 p.278、(1998)