Comparison of Cavity Performance in the Saclay-KEK SC Cavities

E. Kako, K. Saito, B. Visentin* and H. Safa*

KEK ; 1-1, Oho, Tsukuba, Ibaraki, 305-0801 JAPAN *CEA-Saclay ; 91191 Gif-sur-Yvette, FRANCE

Abstract

Three Saclay single-cell cavities were sent to KEK in order to compare the cavity performance. Surface treatment by electro-polishing (EP) was carried out at KEK, so that every cavity achieved an accelerating gradient (Eacc) higher than 30 MV/m with a Qo of more than 10¹⁰. One cavity has attained an Eacc of 40 MV/m at KEK and also 43 MV/m at Saclay. It was confirmed that baking around 100°C for some-tens hours has been effective to improve a Qo-drop observed at high gradients (>25MV/m) in both chemical polished (CP) and EP cavities. The latest cavity test results obtained at KEK and at Saclay are reported in this paper.

SaclayとKEK間の超伝導空洞の性能比較

1、はじめに

超伝導空洞の高電界性能は、空洞内表面の表 面処理技術に大きく依存し、滑らかで清浄な表面 を得るために、空洞の内表面は化学研摩(CP) や電解研摩(EP)による表面研摩が行われる。 また、その後に行われる高圧洗浄(HPR)は、 表面上の化学的残留物やゴミを除去し、空洞組み 立て時の清浄環境とともに、電界放出電子の抑制 に有効である。このような表面処理を適用するこ とにより、KEKでは30~40MV/mの高加速電界が 再現性よく達成され、EPにより処理された空洞 が、СРで処理された空洞より優れた高電界性能 を有することが示された[1]。この観測結果を確認 するとともに、空洞性能における表面処理の効果 CEA-Saclay をより組織的に試験するために、 (仏)で作製および性能測定が行われた3個の二 オブ空洞がKEKに送られた。これらの空洞は、KE Kにおいて各種の表面処理による性能評価が行われ た後[2]、再びSaclavに返送され空洞性能の測定が 続けられている。また最近、100℃位のベーキン グがQ値の向上に有効であることが他研究所から 報告されている[3,4,5]。ここでは、電解研摩によ る性能改善およびこのベーキング効果を確認する ために、これら3空洞についてKEKとSaclayで行 われた空洞性能の測定結果を報告する。

2、1.3GHz単セルニオブ空洞

Saclayから送られてきた1.3GHzニオブ空洞の 特性を表1に示す。S-1およびS-2空洞は、 ニオブの熱伝導率を向上するため熱処理(HT) がSaclayにおいて行われた。各々空洞自身の残留 抵抗比(RRR)も調べられた。Saclayではいず れの空洞も100~200µmの化学研摩(混酸比、HF :HNO3:H3PO4=1:1:2、18℃)による表面処理およ びHPR (90~100bar)後に、性能測定が行われ た。その測定結果を図1に示す。熱処理なしのS - 3 空洞は、15MV/mで最大加速電界が制限され ているが、他の熱処理後の2空洞は、いずれも25 MV/m以上の加速電界を達成している。しかしな がら、どの空洞も20MV/m附近からはじまる著し いQ値の悪化が同様に観測された。この現象は、 これまでのKEKでの実験結果と比較して顕著に異 なる特徴であった。

表1、	Saclayから	送られた	ニオブ空洞
-----	----------	------	-------

空洞		ニオブ材料	熱処理	RRR
Saclay	S-1	東京電解	1300°C HT	320
	S-2	ヘラウス	1000°C HT	200
	S-3	ヘラウス	なし	230

3、電解研摩による空洞性能の改善

表1に示される3空洞は、KEKにおいて電解 研摩(混酸比、H₂SO₄:HF=10:1、30℃)および HPRによる表面処理が行われた。空洞は、クラ ス10のクリーンルームでの組み立て後、真空引 き、ベーキングが行われた。50µmの電解研摩後 における3空洞の性能測定の結果を図2に示す。 いずれの空洞においても、30MV/m以上の高加速 電界が著しいQ値の悪化なく同様に達成された。 この結果は、電解研摩された空洞においては、ニ オブ材料、高温熱処理、RRRなどに依存せずに高 加速電界が得られるということを示している。さ らに、この電解研摩の効果をより直接的に確認す る目的で、電解研摩で処理された空洞に化学研摩 を行った測定結果を図3に示す。60μmの化学研 摩の後には、クエンチにより制限される最大加速 電界が低下し、Q値の悪化現象も再び起こってい る。さらに50µmの化学研摩後には、空洞性能は 一段と悪化した。この空洞に再び電解研摩を行う と、図4に示されるように空洞性能は以前の状態 に回復した。これにより、電解研摩による空洞性 能の改善の効果がより明確になった。

図1、Saclay での空洞性能の測定結果

4、100℃ベーキングによる空洞性能の改善

SaclayとKEKにおける表面処理に関する相違 点として、研摩方法(CP、EP)の他に、水洗後の乾 燥方法が異なる。Saclayでは、HPR後にクリーン ルーム内で清浄空気流下で3時間放置することに より空洞を乾燥させるが、KEKではベーキングを 行って空洞を乾燥させる。したがって、図1では ベーキングなし、図2、3、4は、ベーキング後 の測定結果である。高加速電界でのQ値の悪化現 象の改善にベーキングを行うことが有効であるこ とがSaclayで最初に見い出され[3]、その後DESY [4]およびCEBAF[5]においても同様な結果がすで に報告されている。図5は、KEKでの電解研摩で の測定後にSaclayに送り返されたS-2空洞の少量 化学研摩によるベーキング前後での空洞性能の測 定結果である。ベーキング前には25MV/m以上で 著しいQ値の悪化が起こるが、ベーキング後には かなり改善されている。しかし、高電界において はなおQ値の悪化が見られ、図3におけるKEKでの 化学研摩による測定結果 (ベーキング後)と良く 一致している。一方、電解研摩した空洞において も図6に示されるように、ベーキング前には同様 に29MV/m以上で著しいQ値の悪化が観測され、

図5、化学研摩空洞におけるベーキングの効果

図6、電解研摩空洞におけるベーキングの効果

図7、 ベーキングによる4.2KでのQ値の変化

加速電界が制限される。100℃で30時間のベー キング後には、高電界でのQ値の悪化は無くなり 40MV/mが達成された。したがって、高加速電界 をQ値の悪化なく安定に達成するためには、電解 研摩による表面処理と100℃程度のベーキングを 相乗的に行うことが本質的に重要である。もう1 つのベーキングによる効果として、4.2KでのQ値 の向上が報告されている[3]。図7にベーキングに よる4.2KでのQ値の変化を示す。KEKとSaclayに おいて一致したQ値の改善が観測された。

5、KEK-Saclay間での高電界性能の比較

KEKにおける最終空洞性能とその後のSaclay での空洞性能の比較を図8に示す。これらはすべ て、ベーキング後の測定結果である。空洞はKEK での最終電解研摩後に真空保持の状態で空輸され Saclayにおいて、S-2空洞では少量化学研摩と 高圧水洗、S-3空洞では高圧水洗のみが行われ た。両空洞について、KEKでの測定結果と同様な 高加速電界とQ値が、劣化なくSaclayにおいても 再現された。特に、S-3空洞においては、43 MV/mの最大加速電界が達成された。

図8、KEK-Saclay間での空洞性能の比較

6、まとめ

30MV/m以上の高加速電界をQ値の悪化なく 安定に達成するためには、電解研摩による表面処 理と同時に100℃程度のベーキングを行うことが 本質的に重要であることが確認された。また、電 解研摩およびベーキング後の1空洞において、40 MV/mを超える最大加速電界が、KEKとSaclayの 両方において同様に得られた。

参考文献

- K. Saito, et.al, "Superiority of Electropolishing over Chemical Polishing on High Gradient", Proc. of 8th SRF Workshop, Abano, Italy (1997) p795-813.
- [2] E. Kako, et.al, "Improvement of Cavity Performance by Electropolishing in the 1.3 GHz Nb Superconducting Cavities", Proc. of PAC'99, New York, USA, (1999) p432-434.
- [3] B. Visentin, et.al, "Improvement of Superconducting Cavity Performances at High Accerelating Gradient", Proc. of 6th EPAC, Stockholm, Sweden (1998) p1885-1887.
- [4] L. Lilje, et.al, "Electropolishing and in-situ Baking of 1.3 GHz Niobium Cavities", Proc. of 9th SRF Workshop, Santa-Fe, NM, USA (1999), to be published.
- [5] P. Kneisel, "Preliminary Experience with in-situ Baking of Niobium Cavities", ibid [4].