[13P-30]

DEVELOPMENT OF SHG AUTOCORRELATION SYSTEM FOR JAERI FEL

N. Kikuzawa, T. Yamauchi, R. Nagai and E. J. Minehara

Japan Atomic Energy Research Institute Shirakata-Shirane 2-4, Tokai-mura, Naka-gun, Ibaraki-ken, 319-1195 JAPAN

Abstract

A second-order autocorrelator based on second-harmonic generation (SHG) in a CdTe crystal has been developing for measurement of FEL pulse duration in FIR region. The conversion efficiency of SHG was experimentally obtained to be $\sim 3x10^{-5}/(MWcm^{-2})$. This report describes experimental results of the SHG autocorrelator.

原研自由電子レーザー用 SHG オートコリレーションシステムの開発

1. はじめに

日本原子力研究所(原研)では、超伝導リニアッ クを用いた遠赤外自由電子レーザーの開発を行っ ており、kW発振に成功し、その後も改良を加える ことによって遠赤外域で大強度の速いパルス光源 として利用できるようになった[1]。

赤外から可視光域での速いレーザーパルスの時 間波形測定は非線型光学結晶を利用した第2高調 波発生(second-harmonic generation; SHG)法がよく 用いられているが、20µm帯の領域でSHGオートコ リレーションによるパルス幅を測定したのはFOM グループのみである[2]。20µm帯の遠赤外域で使え る非線型光学結晶としてはCdSe、Te、CdTeなどが あるが、CdTeはCdSeなどよりも長波長側で透過性 があり、複屈折結晶ではないのでFELの波長が変 わったときなどでも位相整合を変えるなどの調整 の必要が無く、コヒーレント長の調整の必要はある が比較的容易であるという利点がある。

原研自由電子レーザーのレーザーパルス幅測定 を行うために、CdTeの結晶を利用した SHG オート コリレータを開発し、パルス幅測定の実験を進めて おり、ここではこれまでに得られた結果について述 べる。

2. SHG オートコリレータの構成

SHG オートコリレータの構成を図1に示す。被 測定パルスをビームスプリッタで強度の等しい二 つのビームに分けて、M1 およびM2のレトロリフ レクターで反射させた後、これらのビームをパラボ リックミラーで収束させ、SHG 発生用 CdTe の結晶 中で収束および交差させる。入射光周波数vの2倍 の周波数2vの光を発生し、その強度は光の電界の4 乗に比例して強くなる。M2をステッピングモータ ーで駆動する微動ミラーとし、M1を固定ミラーと すると、M2 の移動に応じて光路長差が変化し、2 次の自己相関波形から被測定パルス波形を求める 事ができる。分離した光がCdTe の結晶中で光が交 差するように配置することによって、CdTe 結晶の 後ろにスリットを配置して基本波と第2高調波を 分離することができる。

まず、光強度分割比が 1:1 のビームスプリッタを 用いる事が重要となる。しかし、波長に依存しない ようなビームスプリッタとしてのフォイルを得る 事は難しい。また、フォイルの角度に大きく依存す るが、遠赤外の FEL でアラインメントの調整を行 う事は困難である。このため、あらかじめ光軸調整 用の He-Ne レーザーで調整しやすいようにフォイ ルの代わりにミラーを用いた構成に変更した。この 場合、光強度分割比はスプリッタミラーの位置を左 右に微調する事によって容易に1:1 に調整する事が でき、波長が変わったとしても光学フィルタや光検 出器を波長に応じたものに変えるだけで測定が可 能であるという利点を持っている。

図1 SHGオートコリレータの光学配置

3. 実験結果

はじめにマクロパルス幅 400µs、発振波長 22µm で SHG 発生実験を行った。光共振器からスクレー パミラーで取り出された光をミラーで反射して光 実験室まで輸送し、実験を行った。その時の光実験 室でのマクロパルス平均出力は 12W であった。そ の FEL 光を焦点距離 35mm の KRS-5 のレンズで集 光し、ダメージを避けるために焦点位置から 3.5mm 後方に置いた CdTe の結晶に照射した。CdTe の結晶 と MCT 検出器の間に ZnSe のフィルタを置いて基 本波を落として SHG の信号を測定した。SHG 発生 実験の構成を図2および MCT 検出器の信号を図3 に示す。CdTe 結晶がある場合と無い場合とを比較 する事によって SHG の変換効率を求めると、効率 は~3x10⁻⁵/(MWcm⁻²)であった[3]。この値は CO₂レー ザーを用いた実験の変換効率に近い値を示してい る[4]。

図2 SHG発生実験の測定系

図 3 MCT 検出器の信号

次に、SHG オートコリレータを構成し、パルス 幅測定実験を行った。FEL 光を 100mmのアイリス できった後、ミラーで 2 分割した。レトロリフレク ターM1, M2 で反射された光が CdTe の結晶中で交 差するように調整した後、M2 を 0~10mmの範囲で 動かし、SHG 信号の測定を行った。その結果、こ れまでに明確な自己相関波形の観測はできていな いが、その理由として、アラインメント用の He-Ne レーザーと FEL 光との光軸のずれ、CdTe 結晶の配 置の調整不足、基本波と第 2 高調波との信号比が適 切でないため分離できていない、などを予想してい る。今後さらに光学系の見直しなどを進めながら、 容易に自己相関波形の観測ができるような手法を 確立する予定である。

4. おわりに

FEL 研究において、遠赤外域のパルス幅を測定す るオートコリレータを開発する事は重要である。ま ず、波長 22µm の FEL 光を CdTe 結晶に入射し、SHG 発生に成功した。次に、その波長で変換効率を求め ると~3x10⁻⁵/(MWcm²)が得られた。

また、新規な点として、はじめ SHG オートコリ レータをハーフミラーとしてのフォイルで構成し ていたが、アラインメントを調整するのが困難であ ることがわかったため、ミラーを利用する構成に変 更した。

最後に、現在までに明確な自己相関波形の観測は できていないが、測定方法の見直しを進めながら SHG オートコリレーションシステムの開発を進め ていく予定である。

参考文献

- N. Nishimori, et al., "Improvement of JAERI high power FEL", in this proceedings.
- [2] G.M.H Knippels, et al., Nucl. Instr. and Meth. in Phys. Res, A375 (1996) 150.
- [3] T. Yamauchi, et al., to be published in Jpn. J. Appl. Phys. (2000).
- [4] C.K.N. Patel: Phys. Rev. Lett. 16 (1966) 613.