[13P-41]

PULSE-BY-PULSE VARIATION OF ENERGY SPECTRA ON THE LNS LINAC

A. Miyamoto^{*)}, M. Oyamada, A. Kurihara, K. Shinto, M. Mutoh

Laboratory of Nuclear Science, Tohoku University 1-2-1 Mikamine, Taihaku, Sendai 982-0826, Japan

Abstract

The 300MeV Linac at LNS is driven with a maximum repetition rate of 300 Hz generated from the six harmonics of the 50Hz electricity power line. We have constructed a new system that measures respective beam energy spectra by dividing pulses into 6 periodic groups. Results suggest differences in 6 energy spectra, are caused by periodic variation of klystron RF power. We tried to stabilize it by applying an external reference voltage for the de'Qing circuits in the klystron pulser.

核理研ライナックにおけるパルスごとのエネルギースペクトルの変化

1. はじめに

東北大核理研 300MeV ライナックは、電源周波数で ある 50Hz を 6 逓倍したトリガによって最大繰り返し 300pps で運転されている。ところが出力ビームは 50Hz の電源周波数の影響[1]と思われる周期的な変動をも っていることが判ってきた。そこで、ライナックの出力パ ルスを 6 パルスの繰り返しごとにそれぞれをグループ 分けして、独立にエネルギースペクトルを測定するシス テムを構築した。

2. 測定システム

2.1 全体構成

ビームのエネルギースペクトルは、ライナックの分析 電磁石系を通過するビームのエネルギーと電荷量を測 定することによって得られる[2]。6 パルスごとのグルー プ分けのために専用のトリガ回路を用いる。分析電磁 石の磁場を連続的に変化させることにより、スリットを通 過するビームのエネルギーを変化させながらビームの 電荷量を二次電子モニタ(SEM)を用いて測定する。図 1に測定システムの全体構成を示す。このシステムでは、 6 つのエネルギースペクトルを同時に測定することがで きる。

図1 エネルギースペクトル測定システム

2.2 トリガ回路

核理研ライナックでは 300pps のメイントリガを得るた めに 50Hz 3相交流を用いて、それぞれの相の電圧が 0V になるタイミングでトリガを出力している。そこでビー ムを 6 パルスごとにそれぞれグループ分けをするため に、内部のカウンタにより 300pps メイントリガを 6 分周 した基準トリガを発生する「1/6トリガ回路」と呼ばれる回

^{*)} A. Miyamoto, 022-743-3436, miyamoto@lns.tohoku.ac.jp

路を制作した。この基準トリガを単相 50Hz 交流の位相 と比較することで、パルスの絶対番号を決定することが できる。またこのトリガ発生回路は商用交流 50Hz を基 準とした 1~6 の番号のついた任意のトリガを、加速トリ ガとして出力することができる。

2.3 ビームエネルギー

ライナックの分析電磁石系は 2 つの偏向電磁石と 1 つの四極電磁石と、エネルギー分散のある位置に置か れたスリットから構成されている。この分析電磁石系に より、通過するビームの中心エネルギーは偏向電磁石 の磁場で決定され、エネルギー幅はスリットによって制 限される。

エネルギースペクトルを得るためには、スリットを適当 なエネルギー幅に開き、偏向電磁石に流れる電流値を 連続的に変化させることにより、分析電磁石系を通過 するビームのエネルギーを連続的に変化させる。このと き偏向電磁石と直列に接続された磁場測定用の電磁 石の磁場を NMR 法により測定することで、ビームエネ ルギーを決定する。具体的にはパルス毎に磁場測定 器の NMR 共振 RF 出力を周波数カウンタで計測し、 GP-IB インターフェイスで接続されたコンピュータに保 存し、解析時にその周波数からビームエネルギーを算 出する。

2.4 パルス中の電荷量

1 パルスに含まれる電荷量は二次電子モニタ(SEM) を用いて測定する。SEM の出力波形をパルス毎にディ ジタルオシロスコープを用いて、GP-IB インターフェイ ス経由でコンピュータに保存する。測定終了後に保存 されたパルス毎の波形を積分することにより、パルスに 含まれる電荷量を算出する。

3. 測定結果

測定結果を図 2に示す。6 つのエネルギースペクトル が大きく分けて 2 つのグループに分かれていることが 確認された。

この測定されたスペクトルから、それぞれのパルスに

ついてビームエネルギーの二乗平均 E_{rms}を式(1)のよう

に定義して、

図2 安定化前のエネルギースペクトル

$$E_{\rm ms} = \sqrt{\frac{\int_0^\infty E^2 \cdot f(E) dE}{\int_0^\infty f(E) dE}}$$
(1)

E : beam energy

f(E) : measured energy spectra

6つのパルスについて計算すると表1のようになった。

Pulse No.	$E_{\rm rms}[{\rm MeV}]$
1	198.80
2	198.83
3	200.01
4	199.46
5	199.90
6	200.16

表1 安定化前のエネルギースペクトルの二乗平均

この結果をもとに、パルス毎の E_{rms} の標準偏差 α 6 つの E_{rms} の最大値と最小値の差**D**E、さらに E_{rms} の平均 値 E_{man} を計算すると、

 $\sigma = 0.54 \text{ [MeV]}$ DE = 1.35 [MeV]

 $E_{\rm mean} = 199.53 \,[{\rm MeV}]$

という結果を得た。ビームの平均エネルギーと比較して、 最大 0.68%の変動幅を持っていることになる。

4. 安定化

測定結果から、ビームエネルギースペクトルはグルー

プ毎に異なっていることが確認された。これはクライスト ロン出力の周期的変動に起因すると考えられる[3]。ク ライストロンパルサの de'Q 回路部に入力される基準電 圧は、DAC 出力電圧をクライストロン室までの数十 m 同軸ケーブルによって輸送されている。クライストロン 室内には様々なノイズが存在しており、de'Q 回路に入 力されている電圧にも様々なノイズが存在し、特に 50Hz の周波数成分を持つノイズが多く確認された。そ こで、電源としてバッテリーを用いた基準電圧を発生す る回路をクライストロンパルサの側に設置して、可能な 限り短い(~100mm)同軸ケーブルによって接続すること で、ノイズの影響を除くことにした。図 3にクライストロン パルサ de'Q 基準電圧として用いた回路を示す。

図3 de'Q 基準電圧回路

核理研ライナックには 5 台のクライストロンパルサが 稼働しているが、そのすべての de'Q 回路に上に述べ たような安定化を施した基準電圧を入力して測定した エネルギースペクトルが図4である。

図4 安定化後のエネルギースペクトル

この結果をもとに安定化前と同様に表 2に示すような

E_{rms}を計算して、さらに標準偏差等を計算すると、

Pulse No.	$E_{\rm rms}[{\rm MeV}]$
1	201.54
2	201.18
3	201.01
4	201.93
5	201.96
6	202.29

表2 安定化後のエネルギースペクトルの二乗平均

 $\sigma = 0.45 \text{ [MeV]}$

 $DE = 1.28 \, [MeV]$

 $E_{\rm mean} = 201.65 \, [{\rm MeV}]$

という結果を得た。**D**E/E_{mean}= 0.63%の変動幅を持って いることになる。安定化前と比較すると、 dは 82.9% まで 減少し、**D**E/E_{mean} で比較しても多少安定化の効果が見 られた。

5. 今後の課題

ライナックの不安定性の原因については、de'Q 基準 電圧に関連する RF 出力の他にも、RF の位相不安定 性など多数考えられる。実際、測定ごとにエネルギース ペクトルの形状が大きく変化していくことも確認された。 さらに、ライナックの調整によってもかなりスペクトルの 形状変化に影響があることも確認された。今後は de'Q 基準電圧以外の点からも、より一層の安定化を図って いきたいと考えている。

また、現在のスペクトルの測定システムでは、測定開 始から終了まで数分間を必要としており、その間にスペ クトルが変化してしまう可能性がある。そこで、1 つのパ ルスでエネルギースペクトルを測定するようなシステム を開発する必要があると考えている。

参考文献

- [1] A. Miyamoto et al., Proceedings of the 12th Symposium on Accelerator Science and Technology (1999), pp.40.
- [2] 宮本 篤 他, 核理研報告 32 (1999), pp.59.
- [3] 宮本 篤, 修士論文 東北大学 (2000)