Proceedings of the 25th Linear Accelerator Meeting in Japan (July 12-14, 2000, Himeji, Japan)

[13P-45]

High intensity X-ray generation using inverse Compton scattering at BNL

T.Kobuki,S.Kashiwagi,R.Kuroda,M.Washio,T.Hirose¹,T.Kumita¹,K.Dobashi¹,T.Muto¹ T.Omori²,J.Urakawa²,T.Okugi² I.Ben–Zvi^{3,}I.Pogorelsky³,V.Yakimenko³,X.J.Wang³,K.Kuche³,J.Skaritka³, D.Cline⁴,Y.Liu⁴,P.He⁴, Z.Sagalov⁵

Waseda University

Okubo3-4-1,Shinjuku-ku,Tokyo,169-8555,Japan ¹Tokyo Metropolitan University, ²High Energy Accelerator Research Organization ³Brookheaven National Laboratory, ⁴University of California Los Angeles, ⁵Raphael, Israel

Abstract

Laser-Compton scattering between 60MeV, 0.5nC electron beam and 600MW, 180ps CO_2 laser pulses is proposed for generation of high-brightness X-rays. This experiment done by US-Japan collaboration at the Brookhaven National Laboratory Accelerator Test Facility in September 1999. We report the first results of this experiment and simulation of 2nd-stage (we plan to do at this autumn).

逆コンプトン散乱を用いた高輝度 X 線発生

1.はじめに

今回行なわれたレーザーコンプトン実験は、日米 科学技術協力事業として 1998 年から BNL-日本 (早大、都立大、KEK)で行なわれてきた。このレー ザーコンプトン散乱により発生する X 線は、エネ ルギー可変、全体のシステムがコンパクト、超短 パルス X 線生成が可能、等の特徴を持つ。またこ の方法の場合レーザーの偏光をコントロールする 事により、生成される X 線やγ線の偏極度をコン トロールする事もできる。我々はこの事を利用し、 リニアコライダーでの偏極陽電子ビーム生成に使 用することも計画している。 我々は、昨年秋(1999年)にBNL内にある試験加 速器施設(BNL-ATF)において、大強度の $CO_2 \nu$ ーザーと電子ビームを正面衝突させ高輝度のX線 生成に成功した。この実験の特徴は、固体レーザ ーよりも波長が数十倍長い $CO_2 \nu$ ーザー(λ =10.6 μ m)を使用しレーザー光源の光子密度を高めた 事とフォトカソード高周波電子銃(RF-GUN)によっ て生成された低エミッタンスビームにより衝突点で の非常に小さいビームサイズ(~40 μ m/40 μ m)を 実現した事である。以下に昨年秋の高輝度 X 線生 成実験結果と今後の予定について報告する。

2.実験

レーザーコンプトン散乱のために開発されてきた コンプトンチャンバーでは、電子と CO₂レーザーと が、それぞれの焦点で衝突する。ピコ秒 CO2レー ザービームは側面にある窓から入射され、直径5 Omm、焦点距離 15cmの放物面 Cuミラーによって 絞り込まれる。このミラーには直径5mm の穴が空 いており、この穴を電子ビームが通過する。コンプ トンチャンバー直前のCO2レーザー軌道上にはア キシコンレンズが設置してある。このレンズにより、 ほぼガウス分布をしている CO。レーザーのビーム プロファイルはいわゆる'ドーナツ型'へと変化す る。これによってCO2レーザーはミラー中心の穴を 避けて絞り込まれていくのである。焦点における CO₂レーザーのビームサイズは、FWHM で約 40 μm 程度である。これは衝突点での電子ビームの ビームサイズに相当する。焦点を通過した後の CO。レーザーは反対側の放物面ミラーで反射しチ ャンバーの外へと導かれる。

 $CO_2 \nu$ ーザーの励起及び RF-GUN 内での光電 子発生にはピコ秒 YAG レーザーが用いられる。 YAG レーザーのパルスは分割され、それぞれが RF-GUN、 $CO_2 \nu$ ーザーへと送られる。 $CO_2 \nu$ ーザ ーへと送られたレーザーにより、 $CO_2 \nu$ ーザーは FWHM で 180ps のパルスに分けられる。分けられ た $CO_2 \nu$ ーザーのパルスは、再生増幅器にかけら れ、600MW にまで増幅される。

RF-GUNによって発生する、電子ビーム1バンチ あたりのチャージ量は約 0.5nC であり、それらは Linac によって 60MeV まで加速され4極電磁石に よって、チャンバーの中心で絞り込まれる。

YAG レーザーによって、CO₂レーザーを分割す る過程と、光電子の発生する過程とはそれぞれ制 御され、CO₂レーザーと電子のバンチとのジッター は、パルス幅に比べて無視できる程度の大きさに しかならない。

X線は、電子ビームとX線を分けるためのダイポ ールマグネットの下流にある Be ウィンドウの外側 でシリコンフォトダイオードによって観測され、その個数は 3×10⁶photon/pulse であった。コード CAINを用いて行なったシミュレーションの結果検 出されるphotonの個数は2.9×10⁶個となり、実際 の結果と非常によく一致する。

3.simulation

現在 BNL-ATF では CO₂レーザーパワーの大幅 な増強が行なわれており、次期レーザーコンプト ン実験ではパルスエネルギーを~30J、~1TW にまで引き上げて行なわれる予定である。このよ うにレーザーパワーが非常に高くなり、レーザー の光子密度が上がると、通常のコンプトン散乱と 異なり電子1に対し photon2,3,4…個が反応する 非線形効果が顕著に表れてくる。そこでこの非線 形効果のシミュレーションを、コード CAIN を用い て行なった。この結果、~30Jの場合には~ 10¹⁰photons/pulse 以上の光子が発生すると予想 される。この非線形効果を詳細に調ベメカニズム を明らかにして行くことは、大変有意義なアプロ ーチだと我々は考えている。

4.まとめ

BNL-ATF の高輝度 X 線生成実験において、 60MeVの電子ビームとCO₂レーザーを正面衝突さ せレーザーコンプトン散乱により 3×10⁶ photons/pulseのX線生成に成功した。今回の実 験成功の要因に、フォトカソード RF-GUN で生成 された高品質(低エミッタンス)電子ビームと長波 長である CO₂レーザーを用いた事があげられる。 そして、CO₂レーザー増強後の次期実験では、非 線型効果の検証など非常に興味深い研究課題が 豊富にある。

参考文献

[1]I.V.Pogorelsky,Nucl.Instr.&Meth.Res.A411(1998)172[2]CAIN home page

http://www-acc-theory.kek.jp/members/cain

Fig. 1 Experimental setup at BNL-ATF Beam line (Compton cell and Si X-ray detector)

Electron Bunch	
Beam energy	60MeV
Bunch charge	0.5nC
Bunch length (FWHM)	10ps
Beam size at focal point ($\sigma x / \sigma y$)	~ 40∕40μm
CO ₂ Laser	

Wave length	10.64 <i>μ</i> m
Energy/pulse	200mJ
Pulse length(FWHM)	180~320ps
Beam size at focal point ($\sigma x / \sigma y$)	$40/40\mu$ m
Table1: Electron beam and CO2 laser system parameters	

Fig. 2 Typical scope traces of the Si diode output show the Compton x-ray signal with the "laser on" (top trace, 100mV/div scale) and the bremsstrahlung "laser off" signal (bottom trace, 50mV/div).

Fig.3 Scattered photon energy vs angle for the case of 30J CO2 laser Compton scattering