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Abstract

We discuss an algorithm for treating the first-order effects of
space charge in bunched beam RMS envelope simulation.  The
envelope simulation is assumed to be of the type employed by
TRACE3D or TRANSPORT.  Specifically, transfer matrices
are used to propagate the Courant-Snyder parameters along the
beamline.  Thus, to include space charge effects we must
determine a transfer matrix representing the dynamics caused
by the self electric fields.  Because the space charge matrices
depend upon the Courant-Snyder parameters, and the Courant-
Snyder parameters in turn depend upon the space charge
matrices, we are also faced with some self-consistency issues.
We present an adaptive technique for applying the space
charge matrices that maintains a specified level of accuracy.
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1. Overview

Motivation

To develop a fast simulation engine for intense charged-particle
beams systems that is first-order accurate.

Such an engine is useful for
 Initial machine design
 A (fast) online model for Model Reference Control (MRC)

applications during machine operation
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1. Overview (cont.)

Approach – Extension of Linear Beam Optics

 In a straightforward manner, the linear beam optics model for single particle
dynamics can be extended to the dynamics for the second moments of the
beam.

 For intense beams, space charge effects are significant and must be included.
For a beam optics model, this means a matrix Φsc that accounts for space
charge (linear force!).

 For ellipsoidally symmetric beams, we can produce such a Φsc that is almost
independent of the actual beam profile.

 Since the second moments depend upon Φsc and Φsc depends upon the second
moments, we have self-consistency issues.  We employ an adaptive
propagation algorithm that maintains certain level of consistency.
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2. Beam Dynamics Model

Overview
 Introduce homogeneous phase space coordinates z

 Linear beam optics - transfer matrices z(s1) = Φ(s1,s0) z(s0)

 Moment operator 〈⋅〉

 Moment matrix τ = 〈zzT〉

λ Propagation of moment matrix τ(s)
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2. Beam Dynamics Model

Homogenous coordinates are used because
• Translation, rotation, scaling - all be performed by matrix multiplication
• Allows coupling between 1st and 2nd order moments in RMS simulation

Phase Space
 Let s be the path length parameter

along the design trajectory

 Let z(s) denote a particle’s phase space
coordinate in beam frame at axial
position s.

 We parameterize phase space by
homogeneous coordinates in Ρ6×{1}

z ≡ (x,x’,y,y’,z,z’,1)T ∈ Ρ6 × {1}
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2. Beam Dynamic Model (cont.)
Linear Beam Optics Review

Assume that the particle phase z(s) can be propagated according to

z(s) = ΦA(s;s0)z0

where
λ z0 is the initial particle phase at s = s0

λ ΦA(s;s0) is the transfer matrix for the beamline

Notes:
λ ΦA’(s;s0) = A(s)ΦA(s;s0)  where A(s) is matrix of applied forces

λ If A is constant, then ΦA (s;s0) = e(s-s
0
)A

λ Semigroup property ΦA(s2;s0) = ΦA(s2;s1) ΦA(s1;s0)

λ ΦA(s;s0) is symplectic, i.e., ΦA(s;s0) ∈ Sp(6) ⊂ Ρ7_7



Jan 20, 2005 C.K. Allen

9

2. Beam Dynamics Model (cont.)
TRACE3D, TRANSPORT Type Beam Simulation

Divide beamline into N stages, one element per stage
 Entrance position of stage n defined as s ≡ sn

 Define zn = z(sn)

 The action of stage n is represented by a transfer matrix Φn(un) = ΦA(sn+1,sn)
 where un is the control vector for the element (magnet strengths, etc.)

Then zn+1 = Φn(un)zn

Φ0 Φ1
ΦN-1Φ2z0  z1  z2 z3 zN-

1

zN

u0  u1 u2 uN-1

h0 h1 h2 hN-1
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2. Beam Dynamics Model (cont.)
Example – Ideal Steering Dipole

An ideal steering dipole magnet can be model with a transfer
matrix ΦSM of the form

where u ≡ (Δx’, Δy’) are the dipole strengths
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2. Beam Dynamics Model (cont.)
The RMS Moments

 Let the beam be described by the distribution function f : Ρ6×{1} → Ρ

 Define the moment operator 〈⋅〉 as 〈g〉 ≡ ∫g(z)f(z)d6z

λ Now define the following:
ϒ µ ≡ 〈z〉 ∈ Ρ6×{1}  is the mean value vector (beam centroid)

ϒ τ ≡ 〈z zT〉 ∈ Ρ7×7 is the moment matrix
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RMS Envelope Transport Equations
The dynamics of τ are given by

τ(s) = 〈z(s) zT(s) 〉 = 〈(ΦA(s)z0) (ΦA(s)z0)
T〉 = ΦA(s)〈z0 z0

T〉ΦA
T(s)

        = ΦA(s;s0)τ0ΦA
T(s;s0)

NOTES:
λ The moment matrices τ(s) carry the 2nd order statistics, or “RMS envelopes”

λ Transfer matrices ΦA(s;s0) propagate the moment matrices τ (as well as z)

λ Transfer equations for τ allow coupling between 1st and 2nd order moments

Space Charge:
λ To include space charge we must represent it with a transfer matrix ΦB

2. Beam Dynamics Model (cont.)

Require a linear representation of the self electric fields
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3. Self Field Representation

Approach
 Use weighted, least-squares expansion the electric self fields

 The weight is the distribution function f itself
(Expansion is then more accurate in dense regions)

 Self force is then represented as Fsc[z;s] = B(s)z
 B requires determination of field moments 〈xEx〉, 〈yEy〉, 〈zEz〉

λ Assume an ellipsoidally symmetric beam in phase space
ϒ Can compute these moments in terms of τ

ϒ 〈xEx〉, 〈yEy〉, 〈zEz〉 values only weakly coupled to distribution f
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3. Self Field Representation (cont.)
Field Expansions
To accommodate a space charge transfer matrix ΦB, each electric self-field

component Ex, Ey, Ez must have a representation of the form

Ex = a0 + a1x + a2y + a3z (e.g., for x plane)

λ Multiplying the above equation by the functions {1,x,y,z} then taking moments

which we can solve for the ai in terms of the 〈xEx〉, 〈yEy〉, 〈zEz〉

This is the weighted, least-squares, linear approximation for the self fields
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3. Self Field Representation (cont.)
 The self force component Fsc[z] of the dynamics is then given by

where the ai
j = ai

j(τ) are the expansion coefficients

 The space charge transfer matrix ΦB(s) is now defined by the equation

 ΦB’(s) = B(s) ΦB(s)
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3. Self Field Representation (cont.)
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 Assume that the distribution f has (hyper) ellipsoidal symmetry.
Then f has the form

f(z) = f[(z-µ)Tσ-1(z-µ)]

where
λ µ ≡ 〈z〉 is the mean-value vector (centroid location)

λ σ ≡ 〈τ〉 - µ µT is the covariance matrix

ϒ There exists rigid motion M = RTT that aligns the ellipsoid to coordinate axes
λ T  ∈ Ρ3 ⊂ Ρ7 is the translation by (〈x〉,〈y〉,〈z〉)

λ R ∈ SO(3) ⊂ SO(7) is the rotation which diagonalizes the matrix



3. Self Field Representation (cont.)
In the ellipsoid coordinates (a,b,c) = φ(x,y,z), all the

cross moments are zero and the only non-zero
field moments are the following
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3. Self Field Representation (cont.)

Summary
 Aligned ellipsoid to coordinate axes with rigid motion M(τ)

 Expanded the self fields as Ei = [〈xiEi〉/〈xi
2〉] xi

λ Solved for the self moments 〈xiEi〉 in terms of matrix τ

λ For small changes in s self force matrix B is constant
ϒ Then space charge matrix is ΦB(s) = M-1esBM
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4. Space Charge Algorithm

Approach
 Form a transfer matrix Φ(s;s0) that includes space effects to

second order (2nd order accurate)

λ Choose error tolerance ε in the solution (~ 10-5 to 10-7)

λ Use Φ(s;s0) to propagate τ in steps h whose length is
determined adaptively to maintain ε
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4. Space Charge Algorithm (cont.)
Assume that A and B are constant

 Then full transfer matrix Φ(s;s0) = e(s-s
0
)(A+B)

ϒ For practical reasons, we are usually given ΦA and ΦB

λ Beam optics provides ΦA(s)
λ In ellipsoid coordinates ΦB(s) has simply form because B2 = 0

ΦB(s) = esB = I + sB

Define Φave(s) = _[ ΦA(s)ΦB(s) + ΦB(s)ΦA(s) ]
λ By Taylor expanding Φ(s) = es(A+B) we find

Φ(s) = Φave(s) + O(s3)

That is, Φave(s) is a second-order accurate approximation of Φ(s)
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4. Space Charge Algorithm (cont.)
 We now have a stepping procedure which is second-order

accurate in step length h.

ϒ Now consider the effects of “step doubling”
λ Let τ1(s+2h) denote the result of taking one step of length 2h
λ Let τ2(s+2h) denote the result of taking twos steps of length h

Δ(h) ≡ τ1(s+2h) - τ2(s+2h) = 6ch3

where the constant c = dτ(s’)/ds for some s’∈[s,s+2h]

ϒ Consider ratio of |Δ| for steps of differing lengths h0 and h1

h1= h0 [|Δ1|/ |Δ0|]
1/3
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4. Space Charge Algorithm (cont.)

We use the formula h1= h0 [|Δ1|/ |Δ0|]
1/3 as the basis for adaptive step sizing

Given |Δ1| = ε, a prescribed solution residual error we can tolerate

For each iteration k
λ Let |Δ0| = | τ1(sk+2h) - τ2(sk+2h) |, the residual error

λ Let h0 = hk be the step size at iteration k

λ Let h1 = hk+1 be the step size at iteration k+1

hk+1 = hk [ε/| τ1(sk+2h) - τ2(sk+2h) |]1/3

where if hk+1 < hk, we must re-compute the kth step using the new steps size hk+1

to maintain the same solution accuracy
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4. Space Charge Algorithm (cont.)

SNS MEBT Simulation
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Example – Simulation of SNS MEBT
ϒ ε = 10-5

ϒ h0 = 0.03 m
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SNS MEBT Simulation

0

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2 2.5 3 3.5 4

s  (m)

H
or

iz
on

ta
l β

(s
) 

(m
/r

ad
)

Trace3D

XAL

SNS MEBT Simulation

0

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2 2.5 3 3.5 4

s  (m)

H
o

ri
zo

n
ta

l 
β

(s
) 

(m
/r

a
d

)

Trace3D

XAL

Trace3D Verification of XAL Envelope Simulation

 Numerically
evaluating RD

(a la Carlson)
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5. Summary

 We can include the effects of space charge in a linear
beam optics model for RMS envelopes
 The dynamics are accurate to first order

 The simulation is fast

 Key points (from experience)
 To maintain self-consistent solution we should employ an

adaptive stepping algorithm

 A second-order accurate stepping methods seems best

 Use accurate numerical evaluation of the elliptic integrals

 Use accurate method for determining rigid motion M


