

An Overview of XAL

XAL - A High-Level Control Application Framework

Christopher K. Allen Los Alamos National Laboratory

KEK - February 18, 2005

XAL Developers and Collaborators

- ORNL
 - Tom Pelaia
 - Paul Chu
 - Andre Shishlo
 - John Galambos
 - Sarah Cousineau
- ESRF
 - Wolf-Dieter Klotz

- LANL
 - Craig McChesney
 - Bob Dalesio
 - Chris Allen
- Cosylab
 - Igor Kriznar
 - Ales Pucelj
 - Mark Plesko

Special thanks to John Galambos for providing much of this presentation!

Outline

see https://www.sns.gov/APGroup/appProg/xal/xal.htm

- 1. XAL Overview
- 2. Architecture
- 3. Simulation Subsystem
- 4. Application Framework
 - Sample Applications
- 5. Summary

1.Overview - Conceptual Diagram

1. Overview

- XAL is a software infrastructure providing a hierarchical, device-oriented view for application programmers
- Java based with scripting

1. Overview

XAL "Lingo"

- **Framework** or **Infrastructure** (gov.sns.*)
 - General code sharable among applications (in xal.jar)

Application Framework

- See gov.sns.application and gov.sns.xal.application
- A "template" for building gui applications
- Accelerator hierarchy, or **SMF** (gov.sns.xal.smf)
 - Class structure for representing accelerator hardware
- Online model (gov.sns.xal.model)
 - A physics model for doing quick linear transport modeling

XAL in the Control System Hierarchy

2. XAL Architecture UML Subsystem Diagram

2. XAL Architecture

Global Database Generates XML "Configuration" File

- Serves as a common configuration file for all applications
- Creates the accelerator hierarchy
 - Provides the "map" from the flat list of EPICS signals to the accelerator hierarchy

2. XAL Architecture

XAL Datagraph

- XAL "Datagraph"
 - Class structure provides hierarchical "device view" of the accelerator
 - Sequences (MEBT, DTL, CCL, ...)
 - Individual Node type classes (Quads, RF, BPMs, etc.)
- Sequences can be "pasted together" as ComboSequences .

Tools (gov.sns.tools)

- Correlator (gov.sns.ca.correlator)
 - Used to collect PVs with the same timestamp
- Services
 - Used for internal communication between XAL processes (clients – services)
- Database
 - Simple database communication tools (pv-logger uses this)
- XML
 - Easy interface to write / read structures, used for open/save capability for application documents

SNS HL Control Deployment

3. Simulation Subsystem

- Lattice Generator (gov.sns.xal.slg)
 - A model of the machine is constructed from the "device" representation
 - Drifts are added, elements are split
- Simulation Scenario (gov.sns.xal.model.scenario)
 - Lattice element values can be updated from the machine, user defined values or design values
 - Mostly use an envelope model for linac tracking at present

Simulation Subsystem Architecture (Allen, Klotz, Galambos, Pelaia, Chu, McChesney)

Online Model (gov.sns.xal.model)

- Online beam simulation (i.e., no "decks")
 - See LA-UR-02-4979 for theory
- Uses N. Malitsky's **Element/Algorithm/Probe** architecture:
 - Element: Machine representation
 - basic objects that affects the beam (e.g. quad, thin lens, drift)
 - **Probe**: Represents the beam (or aspects of the beam)
 - Envelope, Single-particle, Multi-particle, etc.
 - Algorithm: how to propogate the beam
 - Binds **Probe** to **Element** and provides dynamics
 - Linear dynamics, higher-order dynamics, etc.

4. Appl Framework

4. XAL Application Framework (T. Pelaia)

Application Framework used as a common starting point

•Provides a common look and feel for all applications

•Quick jump-start for application development

•Easy retro-fixes across many apps

•Incorporates a document/view/control architecture (Software Engineering!)

1-D Scan Application

4. Appl Framework

(A. Shishlo)

- Provides an easy way to scan one quantity and monitor others
- Can average over pulses, scan multiple times, pause
- Analysis includes fitting, intersection finding, min/max, etc.
- Easy way to do a quick unanticipated experiment
- Predefined scans with specialized analysis are possible
 - DTL and MEBT phase + amplitude setting applications

2-D Scan Application

4. Appl Framework

(A. Shishlo)

- Added 2-D scan capability (parametric scans)
- Define preset configurations
 - Optional analysis capability
- Used for DTL acceptance scans for phase/amplitude setting
 - Scan DTL phase + amplitude, monitor Faraday Cup signal

Scope Application Triggered Acquisition (T. Pelaia)

• The Digital Oscilloscope – with a similar user interface as analog scopes

- MEBT rebuncher (RF) forward power trace with beam loading:
 - RF = 1 msec @ 20 Hz, beam = 50 msec @ 1 Hz
 - Use the correlator to filter only RF signals with beam pulses
- Potential for future applications
- Requires vigilance on good signal time stamps and proper time waveform packaging

4. Appl Framework

Loss Viewer Application (S.Cousineau)

- "Zoomable" to specific BLMs
- Viewable as fraction of permissible loss
- Faraday cup inserted here

Service Applications (T. Pelaia)

- MPS post-mortem (tracks first fault incidents)
 - posts statistics to elog daily
 - history views

- PV Logger posts sets of data to the database
 - periodically or pushbutton
 - Generalized to allow for custom PV sets

XYZ Correlator Application (P. Chu)

- Pick 2 (or three) signals and monitor them together
- Can use the time correlator to ensure signals are from the same pulse
- Added customization features + added to the framework
- Can export or fit the acquired data

Correlation between phase measurements of 2 BPMs

Save-Compare-Restore (Score) Application (J. Galambos)

- Provides a means to capture machine setup, compare live values to a saved set, and to restore values to a saved set
 - Grabs settable + readback signals
- Can sort by system and device type

• This is the primary means to snap-shot the machine state

Load devices/typ	es	Open	Save As.	Snap	shot N	1achine	Rest	ore	Capture	e as PNG			
Select Systems	RFQ	MEBT	DTL	Timing	FE	DPlate	1						
DPlate	Т	ype	Setp	ooint name		SP Save	Val	SP	live Val	Rea	adback Name	RB Save Val	RB live Val
DIL	RF												
FE	L		RFQ:RF:Gain			0.3500		0.3500					
MEBI	L		RFQ:RF:Gain_Rot			116.9083		116.9083					
RFQ	L		RFQ:RF:Int_scale			7000.0000		7000.0000					
Timing			RFQ:RF:Loop		1.0000		1.0000				0.5400	0 5 4 0 0	
	L		RFQ:RF:ca	vAmpSet		0.5512		J.551	12	REQ:RE:	cavAmpAvg	0.5488	0.5493
	<u> </u>		REQ:RE:Ca	venaseSet	TI 6.44	24.3920	2	24.39	#2U	REQ:RE:	cavenaseAvg	24.3090	24.2417
	<u> </u>		KFQ_HPRF	-moulive	L_Set	130.0000		130.0	1000	REQ_HP	KF:MOUL(V_MON	686 1228	672 1 248
	<u> </u>									DEO DE	PfiDower	0 4 9 4 1	075.1540
										REO HP	RFMod1·L Mon	48 8378	48 8701
	Temo	•								na c	1010u1.1_11011	10.0520	10.01.91
Svs Set	1 cmp		RFO:Chllr	2:T Set		24.2000	2	24.2f	וחח	REO:Chl	Ir 2:T	25.2192	25.3264
										RFQ:Chl	Ir_2:T_LB	24.1819	24.1849
Select Types	Vac												
Diag										RFQ_Va	cIG_2:P	2.710E-7	2.694E-7
Duty										RFQ_Va	::XV:Sts	1.0000	1.0000
Gate													
LEBT													
Mag													
RF													
RR													
Source													
Temp													
Vac													
Type Set	I				Mach	ine data s	saved	at Sa	t Aug 3	0 19:36:5	9 EDT 2003		

Xio Application (P. Chu)

- General purpose value displayer (tables, and or plots)
- Added to application framework, works for MEBT + DTL

Online Model Application (W.-D. Klotz)

• An online model is now available within the XAL framework

- Online model can be run for 1) live values, 2) design values and 3) user defined what-if changes
- Can display or dump beam Twiss output

•Vertical and horizontal beta functions through the MEBT, DTL + D-plate for design values

External Lattice Generator (P. Chu)

- Generate an external lattice file for selected part of the accelerator
- Uses the online model lattice generation
- Tested though DTL (+ HEBT)
- Can use live or design values
- Trace3D or Dynac input files can be created.
- May be incorporated into the online model application.

Orbit-Difference Application (P. Chu)

- Compares differences in beam orbits, for both BPMs and calculated
- Online model is also used in the Orbit Difference Application, in addition to running Trace 3D (external fortran code)

•Orbit difference example using the online model

4. Appl Framework

•Used to observe orbit difference in the horizontal direction

•Helped resolve sign issue in BPMs

Summary

- The XAL application programming infrastructure is in place and working at SNS
 - > 20 applications written actively used in commissioning activities
 - Online model used more extensively
- SLAC will employ XAL in the LCLS

Issues

- Java -- "heavier" than typical X-widgets.
- Need to revisit some applications to make them more efficient.

"Device View" Environment

Class structure provides hierarchical "device view" of Accelerator the accelerator to the application programmers AcceleratorSequence Sequences (MEBT, DTL, CCL, ...) AcceleratorNode Individual Node type classes _ (Quads, RF, BPMs, etc.) BPM **RF** Cavity Magnet BCM WireScanner Sequences can be "pasted together" as EM Magnet Perm Magnet ComboSequences. PMQ Dipole Quadrupole Ver. Hor. Ver. Hor. Ver. Hor. Corr. Corr.

2. XAL Architecture