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Abstract

The capability for simulating the envelopes of three-dimensional 
(bunched) beams has been implemented in the SAD accelerator 
modeling environment.  The simulation technique itself is similar to 
that of other common envelope codes, such as Trace3D, 
TRANSPORT, and the XAL online model.  Specifically, we follow 
the second-order statistics of the beam distribution rather than 
tracking individual particles.  If we assume that the beam maintains 
ellipsoidal symmetry in phase space, we can include the first order 
effects due to space charge using a semi-analytic model.  This is the 
attractive characteristic of envelope codes, since it greatly reduces 
computational time.  This new feature of SAD is implemented 
primarily in the SADScript interpreted language, with only a small 
portion appearing as compiled code.  As such, the simulation does run 
slower than other compiled envelope codes such as TRACE3D or 
XAL, however, as interpreted code it does have the benefit of being 
easily modified.  We demonstrate use of the new feature and present 
example simulations of the J-PARC linear accelerator section. 
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1. Overview

Motivation

To have envelope simulation capability for three-dimensional 
(bunched) beams, including space-charge, within the SAD 
environment.

Such an engine is useful for\
Model reference (Fast)
Low energy electron simulation
Proton simulation
Longitudinal effects
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1. Overview (cont.)

RMS Envelope – Approach Used Within SAD Environment

The simulation principle is that same as that used by Trace3D and 
TRANSPORT.  Specifically, it is an extension of linear beam optics to the 
second-order moment dynamics.

For a beam optics model we require a matrix Φsc to account for the linear part 
of the space-charge force, it is accurate only over short distances ∆s.

In the SAD environment we are given the full transfer matrix Φn for each 
element n.  We must take the Nth root of each Φn where N = Ln/∆s is the 
number of space charge “kicks” to be applied within the element.

The space charge matrix Φsc depends upon the second moments, however, by 
the dynamics equations the second moments σ depend upon Φsc.  Thus, we 
have self-consistency issues and must employ a propagation algorithm that 
maintains a certain level of consistency.



Dec, 2005 C.K. Allen

6

2. Envelope Dynamics Review

RMS envelope simulation is based on the following:
Phase space coordinates z = (x x’ y y’ z dp)T

Linear beam optics - transfer matrices zn+1 = Φn zn

Moment operator 〈⋅〉,  〈g〉 ≡ ∫g(z)f(z)d6z

Moment matrix σ = 〈zzT〉

Propagation of moment matrix σn+1 = ΦnσnΦn
T
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2. Envelope Dynamics Review (cont.) 
The moment matrices {σn} propagate down the beamline according to 

σn+1 = ΦnσnΦn
T

where the {Φn} are transfer matrices for each lattice elements

To include space charge effects we must determine the self forces 
(from σ) then augment the dynamics σn+1 = ΦnσnΦn

T accordingly.

The quantity σ ∈ ℜ6×6 is the 
matrix of second-order moments 
of the beam distribution 
given by
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3. SADScript Implementation
Overview

Register the beamline with the SAD environment using 
GetMAIN[latticeFile] where latticeFile is the input deck describing 
the machine

Acquire the set of transfer matrices {Φn} and lengths {Ln} for all 
beamline elements from the SAD environment 

Take the Nth root of each transfer matrix where N is the number of 
space charge “kicks” to be applied within the element.  This is done 
using the matrix logarithm function.

Propagate moment matrix σ through each element using above 
transfer matrix and the space charge matrix Φsc computed for each 
step ∆s
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3. SADScript Implementation (cont.)
Initialization

We can obtain {Φn} and {Ln}, the lengths of the elements, from calls to 
the SAD environment

{Φn} = TransferMatrices/.Emittance[Matrix->True];
{Ln} = LINE[“LENGTH”];

The initial moment matrix σ0 is built from the initial Twiss parameters
σ0 = CorrelationMatrix6D[{α,β,γ}x, {α,β,γ}y, {α,β,γ}z]
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3. SADScript Implementation (cont.)
Sub-Dividing Beamline Elements (the Nth root of Φn)

The transfer matrix Φn for an element n has the form

Φn = exp(LnFn)

where Ln is the length of the element and Fn is the generator matrix which 
represents the external forces of element n.

To sub-divide element n, we require the matrix Fn, given by

Fn = log(Φn)/Ln

The “sub-transfer matrix” Φn(∆s) for element n can then be computed as 

Φn(∆s)= exp(∆sFn)
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3. SADScript Implementation (cont.)
Transfer Matrices with Space Charge

Whether using the equations of motion or Hamiltonian formalism, within 
a section ∆s of a element n we can write the first-order continuous 
dynamics as

z’(s) = Fnz(s) + Fsc(σ)z(s)

where the matrix Fn represents the external force of element n and Fsc(σ) 
is the matrix of space charge forces.

For Fsc(σ) constant, the solution is z(s) = exp[s(Fn + Fsc)]z0.

Thus, the full transfer matrix including space charge should be 

Φn = exp[∆s(Fn+Fsc)]
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3. SADScript Implementation (cont.)
Numerical Efficiency

For a step size of ∆s, rather than computing the “exact” transfer matrix 

Φn(∆s) = exp[∆s(Fn+Fsc)], 

we compute a transfer matrix which is second-order accurate in ∆s.

Note that 

Φn(∆s) = Φsc(∆s/2) Φn(∆s) Φsc(∆s/2) + O(∆s3) 

where 
Φn(∆s)     = exp(∆sFn)                           (computed once per element)
Φsc(∆s/2) = exp(∆s/2Fsc) = I + ∆s/2Fsc (by idempotency, Fsc

2 = 0)

We have reduced a matrix exponentiation at each step ∆s to one 
matrix addition and two matrix multiplications
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3. SADScript Implementation
SADScript Modules and Some Notable Functions

oldsad/Packages/Scheff.n
{{sn},{γn},{σn}} = ScheffSimulate[K0, σ0, ∆s:0.01]
{{sn},{γn},{Φn}} = GetBeamLineElementData[]
SaveBeamMatrixData[file, {sn}, {γn}, {σn}]

oldsad/Packages/Trace3dToSad.n
K = ComputePerveance[f, Er, W, Q]
{α,β,γ}SAD = TraceToSadTransTwiss[{α,β,γ}T3D]
{α,β,γ}SAD = TraceToSadLongTwiss[f, Er, W, {α,β,γ}T3D]

oldsad/Packages/TwissUtility.n
σ = CorrelationMatrix6D[{α,β,γ}x, {α,β,γ}y, {α,β,γ}z]

oldsad/Packages/MatrixFunctions.n
F = MatrixLog[Φ]
Φ = MatrixExp[F]
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4. Field Calculations

Space charge effects are included by assuming the 
beam has ellipsoidal symmetry with dimensions 
corresponding to the statistics in σ.

f(z) = f(zTσ−1z)

Analytic field expressions for such a bunch 
distributions are available

where a, b, c, are the semi-axes of the ellipsoid 
(depends upon σ) and (x,y,z) are the coordinates 
along the semi-axes
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4. Field Calculations (cont.)
Coordinate Transformations

To apply the previous formula for φ we must rotate to the coordinates of 
the beam ellipsoid semi-axes using a transformation 

R ∈ SO(3) ⊂ SO(6).

Moreover, we require a transformation G = diag(1,1,1,1,γ,1/γ) to convert 
longitudinal coordinates from (z,dp) to (z,z’) (momentum to primed)

The complete transformation is

Λ = RTGTσGR

where the 〈xy〉, 〈xz〉, 〈yz〉 elements of Λ are zero

It is important that this transform is numerically accurate!
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4. Field Calculations (cont.)
Take the Linear Part of the Electric Fields
To each electric self-field component Ex, Ey, Ez is expanded in the form 

Ex = a1x + a2y + a3z (e.g., for x plane)

Multiplying the above equation by the functions {x,y,z} then 
taking moments

if 〈xy〉 = 〈xz〉 = 〈yz〉 (transform GR) we have

This is the weighted, least-squares, linear approximation for the 
self fields
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4. Field Calculations (cont.)
Field Moments
For ellipsoidal beams having a density distribution f, 

the self-field moments can be calculated from φ
and are given by the following:
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4. Field Calculations (cont.)
Space Charge Generator Matrix
Thus, the full space charge generator matrix Fsc(σ) is given by

where
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5. Simulation Results

J-PARC BT Line Simulation
Show SADScript envelope
simulation of the J-PARC 
BT line for several cases

Zero current
30 mA
130 mA

Compare the SADScript envelope 
simulation to simulations provided 
by Trace3D 

Notable differences
Trace3D does not impose 
symplectic condition
Trace3D can simulate emittance 
growth thru RF Gaps (removed)



5. J-PARC Simulation
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5. J-PARC Simulation
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5. J-PARC Simulation
130 mA
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6. Issues

Computation of the matrix logarithm log(Φn) is 
expensive.

Current procedure uses an iterative technique which 
computes a matrix exponential exp(Fn) at each step
The procedure works for Φn close to the identity matrix I

It is not robust, but it should suffice for symplectic 
matrices

Computation of the matrix exponential exp(Fn) is 
also non-trivial

Use a Taylor expansion with scaling and squaring.
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6. Issues (cont.)

Currently only a simple stepping procedure is employed.
The step size ∆s remains constant throughout simulation
By implementing an adaptive stepping algorithm we can obtain 
significant speedup and maintain a specified level of accuracy in 
the solution (see “Bunched Beam Envelope Simulation with 
Space Charge”, KEK, Jan 20, 2005.)

The longitudinal space charge force seems to be slightly 
stronger in all SAD simulations as compared to Trace3D.  

I have debugged the SAD code extensively and have not found 
any errors in the theory or implementation.
I believe this condition is simply a result of the difference in
simulation architecture, but I may be wrong.
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6. Conclusions
A major issue is computational speed
For the J-PARC simulation

Trace3D runs on the order of 0.5 seconds
SAD ScheffSimulate runs on the order of 0.5 minutes

By implementing the adaptive stepping and/or implementing 
the computationally expensive functions as compiled code we 
should see significant speedup.

Only the elliptic integral function RD(x,y,z) in implemented in 
compiled code.
Implementing MatrixExp() as compile code would be the most 
cost-effective

The small difference in longitudinal dynamics between SAD 
and Trace3D may be an artifact of the different approaches.  
However, I am not sure.
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3. SADScript Implementation
Initialization

Load the beamline information from the target “input deck”
We acquire all the transfer matrices {Φn} and all the element 
lengths {Ln}

Space Charge
Compute the partial transfer matrix Φn(∆s) where ∆s = Ln/N
Compute space charge transfer matrix Φsc for a distance ∆s.
Combine Φn (∆s) and Φsc for full transfer matrix Φn,sc(∆s)

Propagation
Propagate σn through element using σi+1 = Φn,sc(∆s)σiΦn,sc(∆s)T

recomputing Φn,sc(∆s) as necessary
Propagate {σn} through beamline using above procedure for each 
element n.
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3. SADScript Implementation (cont.)
Beam Dynamics with Space Charge
To include space charge effects we must determine the self forces then augment 

the dynamics σn+1 = ΦnσnΦn
T to include them.

To propagate the moment matrix σn through an element we must compute a 
transfer matrix Φn,sc that includes space charge. 

Such a transfer matrix can only be computed  accurately for a short distance ∆s < Ln
We must divide each beamline element into sub-elements of length ∆s having the 
appropriate transfer matrix N√Φn
We apply the dynamics σn+1 = N√Φnσn

N√Φn
T many times, recomputing

We use a “kick-like” approach - correcting the beam state at regular intervals 
through each element

We divide each beamline element into sub-elements of length ∆s

We represent the self force through ∆s as a transfer matrix Φsc

Because the self forces depend upon the beam shape, the matrix self force transfer 
matrix Φsc depends upon the moment matrix σ


