
1

Bunched-Beam Envelope Simulation
with Space Charge within the SAD

Environment

Christopher K. Allen
Los Alamos National Laboratory

Dec, 2005 C.K. Allen

2

Abstract

The capability for simulating the envelopes of three-dimensional
(bunched) beams has been implemented in the SAD accelerator
modeling environment. The simulation technique itself is similar to
that of other common envelope codes, such as Trace3D,
TRANSPORT, and the XAL online model. Specifically, we follow
the second-order statistics of the beam distribution rather than
tracking individual particles. If we assume that the beam maintains
ellipsoidal symmetry in phase space, we can include the first order
effects due to space charge using a semi-analytic model. This is the
attractive characteristic of envelope codes, since it greatly reduces
computational time. This new feature of SAD is implemented
primarily in the SADScript interpreted language, with only a small
portion appearing as compiled code. As such, the simulation does run
slower than other compiled envelope codes such as TRACE3D or
XAL, however, as interpreted code it does have the benefit of being
easily modified. We demonstrate use of the new feature and present
example simulations of the J-PARC linear accelerator section.

Dec, 2005 C.K. Allen

3

Outline
1. Overview

1. Motivation
2. Basic Approach

2. Envelope Dynamics Review

3. SADScript Implementation

4. (Field Calculations)

5. Simulation Results

6. Issues and Conclusions

Dec, 2005 C.K. Allen

4

1. Overview

Motivation

To have envelope simulation capability for three-dimensional
(bunched) beams, including space-charge, within the SAD
environment.

Such an engine is useful for\
Model reference (Fast)
Low energy electron simulation
Proton simulation
Longitudinal effects

Dec, 2005 C.K. Allen

5

1. Overview (cont.)

RMS Envelope – Approach Used Within SAD Environment

The simulation principle is that same as that used by Trace3D and
TRANSPORT. Specifically, it is an extension of linear beam optics to the
second-order moment dynamics.

For a beam optics model we require a matrix Φsc to account for the linear part
of the space-charge force, it is accurate only over short distances ∆s.

In the SAD environment we are given the full transfer matrix Φn for each
element n. We must take the Nth root of each Φn where N = Ln/∆s is the
number of space charge “kicks” to be applied within the element.

The space charge matrix Φsc depends upon the second moments, however, by
the dynamics equations the second moments σ depend upon Φsc. Thus, we
have self-consistency issues and must employ a propagation algorithm that
maintains a certain level of consistency.

Dec, 2005 C.K. Allen

6

2. Envelope Dynamics Review

RMS envelope simulation is based on the following:
Phase space coordinates z = (x x’ y y’ z dp)T

Linear beam optics - transfer matrices zn+1 = Φn zn

Moment operator 〈⋅〉, 〈g〉 ≡ ∫g(z)f(z)d6z

Moment matrix σ = 〈zzT〉

Propagation of moment matrix σn+1 = ΦnσnΦn
T

Dec, 2005 C.K. Allen

7

2. Envelope Dynamics Review (cont.)
The moment matrices {σn} propagate down the beamline according to

σn+1 = ΦnσnΦn
T

where the {Φn} are transfer matrices for each lattice elements

To include space charge effects we must determine the self forces
(from σ) then augment the dynamics σn+1 = ΦnσnΦn

T accordingly.

The quantity σ ∈ ℜ6×6 is the
matrix of second-order moments
of the beam distribution
given by

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

′′

′′

′′′′′′′

′′

′′′′′′′

′′

==

2

2

2

2

2

2

dpzdpdpyydpdpxxdp

zdpzzyyzzxxz

dpyzyyyyyxyx

ydpyzyyyyxxy

dpxzxyxyxxxx

xdpxzyxxyxxx

Tzzσ

Dec, 2005 C.K. Allen

8

3. SADScript Implementation
Overview

Register the beamline with the SAD environment using
GetMAIN[latticeFile] where latticeFile is the input deck describing
the machine

Acquire the set of transfer matrices {Φn} and lengths {Ln} for all
beamline elements from the SAD environment

Take the Nth root of each transfer matrix where N is the number of
space charge “kicks” to be applied within the element. This is done
using the matrix logarithm function.

Propagate moment matrix σ through each element using above
transfer matrix and the space charge matrix Φsc computed for each
step ∆s

Dec, 2005 C.K. Allen

9

3. SADScript Implementation (cont.)
Initialization

We can obtain {Φn} and {Ln}, the lengths of the elements, from calls to
the SAD environment

{Φn} = TransferMatrices/.Emittance[Matrix->True];
{Ln} = LINE[“LENGTH”];

The initial moment matrix σ0 is built from the initial Twiss parameters
σ0 = CorrelationMatrix6D[{α,β,γ}x, {α,β,γ}y, {α,β,γ}z]

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
−

−
−

−
−

=

zzzz

zzzz

yyyy

yyyy

xxxx

xxxx

εγεα
εαεβ

εγεα
εαεβ

εγεα
εαεβ

~~0000

~~0000
00~~00
00~~00
0000~~
0000~~

0σ

Dec, 2005 C.K. Allen

10

3. SADScript Implementation (cont.)
Sub-Dividing Beamline Elements (the Nth root of Φn)

The transfer matrix Φn for an element n has the form

Φn = exp(LnFn)

where Ln is the length of the element and Fn is the generator matrix which
represents the external forces of element n.

To sub-divide element n, we require the matrix Fn, given by

Fn = log(Φn)/Ln

The “sub-transfer matrix” Φn(∆s) for element n can then be computed as

Φn(∆s)= exp(∆sFn)

Dec, 2005 C.K. Allen

11

3. SADScript Implementation (cont.)
Transfer Matrices with Space Charge

Whether using the equations of motion or Hamiltonian formalism, within
a section ∆s of a element n we can write the first-order continuous
dynamics as

z’(s) = Fnz(s) + Fsc(σ)z(s)

where the matrix Fn represents the external force of element n and Fsc(σ)
is the matrix of space charge forces.

For Fsc(σ) constant, the solution is z(s) = exp[s(Fn + Fsc)]z0.

Thus, the full transfer matrix including space charge should be

Φn = exp[∆s(Fn+Fsc)]

Dec, 2005 C.K. Allen

12

3. SADScript Implementation (cont.)
Numerical Efficiency

For a step size of ∆s, rather than computing the “exact” transfer matrix

Φn(∆s) = exp[∆s(Fn+Fsc)],

we compute a transfer matrix which is second-order accurate in ∆s.

Note that

Φn(∆s) = Φsc(∆s/2) Φn(∆s) Φsc(∆s/2) + O(∆s3)

where
Φn(∆s) = exp(∆sFn) (computed once per element)
Φsc(∆s/2) = exp(∆s/2Fsc) = I + ∆s/2Fsc (by idempotency, Fsc

2 = 0)

We have reduced a matrix exponentiation at each step ∆s to one
matrix addition and two matrix multiplications

Dec, 2005 C.K. Allen

13

3. SADScript Implementation
SADScript Modules and Some Notable Functions

oldsad/Packages/Scheff.n
{{sn},{γn},{σn}} = ScheffSimulate[K0, σ0, ∆s:0.01]
{{sn},{γn},{Φn}} = GetBeamLineElementData[]
SaveBeamMatrixData[file, {sn}, {γn}, {σn}]

oldsad/Packages/Trace3dToSad.n
K = ComputePerveance[f, Er, W, Q]
{α,β,γ}SAD = TraceToSadTransTwiss[{α,β,γ}T3D]
{α,β,γ}SAD = TraceToSadLongTwiss[f, Er, W, {α,β,γ}T3D]

oldsad/Packages/TwissUtility.n
σ = CorrelationMatrix6D[{α,β,γ}x, {α,β,γ}y, {α,β,γ}z]

oldsad/Packages/MatrixFunctions.n
F = MatrixLog[Φ]
Φ = MatrixExp[F]

Dec, 2005 C.K. Allen

14

4. Field Calculations

Space charge effects are included by assuming the
beam has ellipsoidal symmetry with dimensions
corresponding to the statistics in σ.

f(z) = f(zTσ−1z)

Analytic field expressions for such a bunch
distributions are available

where a, b, c, are the semi-axes of the ellipsoid
(depends upon σ) and (x,y,z) are the coordinates
along the semi-axes

∫ ∫
∞ ∞

+
+

+
+

+

+++
=

0
2/122/122/12

0
2

2

2

2

2

2)()()(
)(

4
),,(

ct
z

bt
y

at
x

dsdt
ctbtat

sfqabczyx
ε

φ

a
b

c

x

y

z

Dec, 2005 C.K. Allen

15

4. Field Calculations (cont.)
Coordinate Transformations

To apply the previous formula for φ we must rotate to the coordinates of
the beam ellipsoid semi-axes using a transformation

R ∈ SO(3) ⊂ SO(6).

Moreover, we require a transformation G = diag(1,1,1,1,γ,1/γ) to convert
longitudinal coordinates from (z,dp) to (z,z’) (momentum to primed)

The complete transformation is

Λ = RTGTσGR

where the 〈xy〉, 〈xz〉, 〈yz〉 elements of Λ are zero

It is important that this transform is numerically accurate!

Dec, 2005 C.K. Allen

16

4. Field Calculations (cont.)
Take the Linear Part of the Electric Fields
To each electric self-field component Ex, Ey, Ez is expanded in the form

Ex = a1x + a2y + a3z (e.g., for x plane)

Multiplying the above equation by the functions {x,y,z} then
taking moments

if 〈xy〉 = 〈xz〉 = 〈yz〉 (transform GR) we have

This is the weighted, least-squares, linear approximation for the
self fields

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

x

x

x

zE
yE
xE

a
a
a

zyzxz

yzyxy

xzxyx

3

2

1

2

2

2

x
x

xE
zyxE x

x 2
),,(=

4. Field Calculations (cont.)
Field Moments
For ellipsoidal beams having a density distribution f,

the self-field moments can be calculated from φ
and are given by the following:

a
b

c

x

y

z

where Γ(f) is almost constant (F. Sacherer) and RD is the elliptic integral

() () ()∫
∞

+++
≡

0 2/32/12/12
3),,(

ztytxt
dtzyxRD

[]

[]

[] ,,,
243

)(

,,,
243

)(

,,,
243

)(

2222

0

2222

0

2222

0

><><><><
Λ

=

><><><><
Λ

=

><><><><
Λ

=

zyxRzQfzE

yxzRyQfyE

xzyRxQfxE

Dz

Dy

Dx

πε

πε

πε

Dec, 2005 C.K. Allen

18

4. Field Calculations (cont.)
Space Charge Generator Matrix
Thus, the full space charge generator matrix Fsc(σ) is given by

where

11

0/10000
000000
000/100
000000
00000/1
000000

)(−−

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

= GRRGσF T

z

y

x

sc

f

f

f

[]

[]

[]><><><
⋅

=

><><><
⋅

=

><><><
⋅

=

222
2/3

2

222
2/3

222
2/3

,,
52

1

,,
52

1

,,
52

1

zyxRK
f

yxzRK
f

xzyRK
f

D
z

D
y

D
x

γ

5. Simulation Results

J-PARC BT Line Simulation
Show SADScript envelope
simulation of the J-PARC
BT line for several cases

Zero current
30 mA
130 mA

Compare the SADScript envelope
simulation to simulations provided
by Trace3D

Notable differences
Trace3D does not impose
symplectic condition
Trace3D can simulate emittance
growth thru RF Gaps (removed)

5. J-PARC Simulation
0 mA

0

10

20

30

0 40 80 120 160 200

s (m)

ra
d/

m T3D
SAD

0

10

20

30

0 40 80 120 160 200

s (m)

ra
d/

m T3D
SAD

0

300

600

900

1200

0 40 80 120 160 200

s (m)

ra
d/

m T3D
SAD

Horizontal βx(s) Vertical βy(s)

Longitudinal βz(s)

5. J-PARC Simulation
30 mA

0

10

20

30

0 40 80 120 160 200

s (m)

ra
d/

m T3D
SAD

0

10

20

30

0 40 80 120 160 200

s (m)

SAD
T3D

Horizontal βx(s) Vertical βy(s)

Longitudinal βz(s)

0

500

1000

1500

2000

2500

0 40 80 120 160 200

s (m)

ra
d/

m SAD
T3D

5. J-PARC Simulation
130 mA

0

10

20

30

40

0 40 80 120 160 200

s (m)

ra
d/

m SAD
T3D

0

10

20

30

40

0 40 80 120 160 200

s (m)

SAD
T3D

Horizontal βx(s) Vertical βy(s)

Longitudinal βz(s)

0

2000

4000

6000

8000

0 40 80 120 160 200

s (m)

ra
d/

m SAD
T3D

Dec, 2005 C.K. Allen

23

6. Issues

Computation of the matrix logarithm log(Φn) is
expensive.

Current procedure uses an iterative technique which
computes a matrix exponential exp(Fn) at each step
The procedure works for Φn close to the identity matrix I

It is not robust, but it should suffice for symplectic
matrices

Computation of the matrix exponential exp(Fn) is
also non-trivial

Use a Taylor expansion with scaling and squaring.

Dec, 2005 C.K. Allen

24

6. Issues (cont.)

Currently only a simple stepping procedure is employed.
The step size ∆s remains constant throughout simulation
By implementing an adaptive stepping algorithm we can obtain
significant speedup and maintain a specified level of accuracy in
the solution (see “Bunched Beam Envelope Simulation with
Space Charge”, KEK, Jan 20, 2005.)

The longitudinal space charge force seems to be slightly
stronger in all SAD simulations as compared to Trace3D.

I have debugged the SAD code extensively and have not found
any errors in the theory or implementation.
I believe this condition is simply a result of the difference in
simulation architecture, but I may be wrong.

Dec, 2005 C.K. Allen

25

6. Conclusions
A major issue is computational speed
For the J-PARC simulation

Trace3D runs on the order of 0.5 seconds
SAD ScheffSimulate runs on the order of 0.5 minutes

By implementing the adaptive stepping and/or implementing
the computationally expensive functions as compiled code we
should see significant speedup.

Only the elliptic integral function RD(x,y,z) in implemented in
compiled code.
Implementing MatrixExp() as compile code would be the most
cost-effective

The small difference in longitudinal dynamics between SAD
and Trace3D may be an artifact of the different approaches.
However, I am not sure.

Dec, 2005 C.K. Allen

26

3. SADScript Implementation
Initialization

Load the beamline information from the target “input deck”
We acquire all the transfer matrices {Φn} and all the element
lengths {Ln}

Space Charge
Compute the partial transfer matrix Φn(∆s) where ∆s = Ln/N
Compute space charge transfer matrix Φsc for a distance ∆s.
Combine Φn (∆s) and Φsc for full transfer matrix Φn,sc(∆s)

Propagation
Propagate σn through element using σi+1 = Φn,sc(∆s)σiΦn,sc(∆s)T

recomputing Φn,sc(∆s) as necessary
Propagate {σn} through beamline using above procedure for each
element n.

Dec, 2005 C.K. Allen

27

3. SADScript Implementation (cont.)
Beam Dynamics with Space Charge
To include space charge effects we must determine the self forces then augment

the dynamics σn+1 = ΦnσnΦn
T to include them.

To propagate the moment matrix σn through an element we must compute a
transfer matrix Φn,sc that includes space charge.

Such a transfer matrix can only be computed accurately for a short distance ∆s < Ln
We must divide each beamline element into sub-elements of length ∆s having the
appropriate transfer matrix N√Φn
We apply the dynamics σn+1 = N√Φnσn

N√Φn
T many times, recomputing

We use a “kick-like” approach - correcting the beam state at regular intervals
through each element

We divide each beamline element into sub-elements of length ∆s

We represent the self force through ∆s as a transfer matrix Φsc

Because the self forces depend upon the beam shape, the matrix self force transfer
matrix Φsc depends upon the moment matrix σ

