
J-PARC Trace3D Upgrades

Christopher K. Allen
Los Alamos National Laboratory

Trace3D “Project”

 Split the big FORTRAN file
 Each SUBROUTINE has file

 Project built using a Makefile (K. Furukawa)

 Version controlled (K. Furukawa)
 Repository jkksv01.j-parc.jp:/jk/master/t3d_cka

 Can reassemble back into the big FORTRAN
file if desired

General Additions

 Debugging and Data I/O
Added output subroutines for debugging and recording Twiss

parameters along beamline
 InputDump – stores input “deck” to disk (file “InputData.txt”) to

check that data is being properly input

 TwissDump – stores Twiss parameters along beamline to disk file
“TwissDump.txt”. Twiss parameters are stored during simulation
since trajectory data is not kept in Trace3D memory.

 Convenience Matrix Functions
 Multiply, scalar multiply, commutator
 Matrix exponent
 Matrix logarithm (E. Forest)

General Additions (cont.)

 Steering Magnets
Added steering magnets to the element library.

 Note that only the centroid tracking is affected
by this element, it has no effect on the second-
order moment dynamics.

 The type identifier is 19 (NT=19).
 The parameters is Δx’, Δy’

General Additions (cont.)

 Arbitrarily Oriented Beam Ellipsoids
To compute the electric self forces of the beam

Trace3D performs a coordinate transform to
“eigen-coordinates” of ellipsoid

 In the current version this transform fails when
the beam is skewed arbitrarily off the design axis
 That is, skewed in a direction other that one of the

two transverse directions.

 This condition was fixed.

Choice of Elliptic Integral RD or Form Factor ξ

 For the space charge calculations you may
switch between the use of the form factor and
direct (numerical) evaluation of the elliptic
integral.
 This feature is available using the input variable

iFlgUseRd in the $DATA section of the Trace3D
input file

 iFlgUseRd = 0: use form factor ξ (default)

 iFlgUseRd = 1: use elliptic integral RD

1 2 3 4 5
s

0.2

0.4

0.6

0.8

1
ξ(s)

Form Factor vs. Elliptic Integral
 Original Trace3D uses a “form factor” ξ in the self field

calculations.
λ The function ξ(s) is part of an analytic approximation to an

elliptic integral RD, which is defined

 The form factor is defined

() () ()∫
∞

+++
≡

0 2/32/12/12

3
),,(

ztytxt

dt
zyxRD

()()

>
−

−

<
−

−

−
=

++
≡

−

−

∞

∫
1forcosh

1
1

1forcos
1

1

1

1

12
)(

1

2

1

2

20 2/32 ss
s

s

ss
s

s

sstt

dts
sξ

Form Factor vs. Elliptic Integral (cont.)

The approximations for RD in terms of the form factor are then given as

Where X, Y, and Z are the semi-axes of the beam ellipsoid and

ε = (X-Y)/2

is related to the eccentricity of the transverse ellipse

),(
3

),,(

),(1
13

),,(

),(1
13

),,(

2222

222

222

εξ

εξ

εξ

O
XY

Z

XYZ
ZYXR

O
XY

Z

YXYZ
YXZR

O
XY

Z

YXXZ
XYZR

D

D

D

+

≈

+

−

+
≈

+

−

+
=

Comparison of Trace3D elliptic integral
and form factor simulations

SNS MEBT - KEK Trace3D (Using Rd)

0

1

2

3

4

5

6

7

8

0

0.
14

0.
14

0.
28

0.
35

0.
43

0.
54

0.
65

0.
65

0.
73 1.
2

1.
37

1.
41

1.
44

1.
51

1.
61

1.
68

1.
95

2.
01

2.
08

2.
15

2.
15

2.
26

2.
88

2.
91

2.
94

3.
03

3.
09

3.
24 3.
3

3.
42

3.
42

3.
51

s (m)

B
et

a
(m

m
)

BETA_x

BETA_y

BETA_z

SNS MEBT - KEK Trace3D (Using Form Factor)

0

1

2

3

4

5

6

7

8

0

0.
14

0.
14

0.
28

0.
35

0.
43

0.
54

0.
65

0.
65

0.
73 1.
2

1.
37

1.
41

1.
44

1.
51

1.
61

1.
68

1.
95

2.
01

2.
08

2.
15

2.
15

2.
26

2.
88

2.
91

2.
94

3.
03

3.
09

3.
24 3.
3

3.
42

3.
42

3.
51

s (m)

B
et

a
(m

m
)

BETA_x

BETA_y

BETA_z

SNS MEBT - SNS Trace (Using Form Factor)

0

1

2

3

4

5

6

7

8

0

0.
14

0.
14

0.
28

0.
35

0.
43

0.
54

0.
65

0.
65

0.
73 1.
2

1.
37

1.
41

1.
44

1.
51

1.
61

1.
68

1.
95

2.
01

2.
08

2.
15

2.
15

2.
26

2.
88

2.
91

2.
94

3.
03

3.
09

3.
24 3.
3

3.
42

3.
42

3.
51

s (m)

b
et

a
(m

m
)

BETA_x

BETA_y

BETA_z

SNS Version of Trace3D (form fac)

Adaptive Integration Stepping

Approach
 Form a transfer matrix Φ(s;s0) that includes space effects to

second order (2nd order accurate)

λ Choose error tolerance ε in the solution (~ 10-5 to 10-7)

λ Use Φ(s;s0) to propagate σ in steps h whose length is
determined adaptively to maintain ε

Adaptive Stepping and Trace3D

 Due to Trace3D “architecture”
implementing adaptive
stepping may require a major
rewrite
 Brittle – dangerous

 Implementation possible if it
can be done in
SUBROUTINE TRANS
 Compute log(Φ) = ΔsA

λ Compute exp(hA)

λ May be too CPU intensive

XAL Architecture

ϒ XAL Architecture is
modern
λ Not coupled

λ Easier to upgrade

λ Easier to maintain

ϒ XAL Appl. Devel
λ Hard part is setting up DB

λ API is object oriented and
documented (easy)

λ New features are
(relatively) easily installed

XAL Architecture – Sequence Diagram

Summary

 Adding adaptive stepping to Trace3D may not be
worth the effort
 Ability to implement it in TRANS

 Compute matrix logarithms and exponentials

 Add space charge to SAD?
 Unknown effort – inexperienced with SAD

 Add J-PARC features to XAL?
 Is XAL a player?

 Very familiar with XAL

4. Space Charge Algorithm (cont.)
Assume that A and B are constant

 Then full transfer matrix Φ(s;s0) = e(s-s
0
)(A+B)

ϒ For practical reasons, we are usually given ΦA and ΦB

λ Beam optics provides ΦA(s)
λ In ellipsoid coordinates ΦB(s) has simply form because B2 = 0

ΦB(s) = esB = I + sB

Define Φave(s) = _[ΦA(s)ΦB(s) + ΦB(s)ΦA(s)]
λ By Taylor expanding Φ(s) = es(A+B) we find

Φ(s) = Φave(s) + O(s3)

That is, Φave(s) is a second-order accurate approximation of Φ(s)

4. Space Charge Algorithm (cont.)
 We now have a stepping procedure which is second-order

accurate in step length h.

ϒ Now consider the effects of “step doubling”
λ Let τ1(s+2h) denote the result of taking one step of length 2h
λ Let τ2(s+2h) denote the result of taking twos steps of length h

Δ(h) ≡ τ1(s+2h) - τ2(s+2h) = 6ch3

where the constant c = dτ(s’)/ds for some s’∈[s,s+2h]

ϒ Consider ratio of |Δ| for steps of differing lengths h0 and h1

h1= h0 [|Δ1|/ |Δ0|]
1/3

4. Space Charge Algorithm (cont.)

We use the formula h1= h0 [|Δ1|/ |Δ0|]
1/3 as the basis for adaptive step sizing

Given |Δ1| = ε, a prescribed solution residual error we can tolerate

For each iteration k
λ Let |Δ0| = | τ1(sk+2h) - τ2(sk+2h) |, the residual error

λ Let h0 = hk be the step size at iteration k

λ Let h1 = hk+1 be the step size at iteration k+1

hk+1 = hk [ε/| τ1(sk+2h) - τ2(sk+2h) |]1/3

where if hk+1 < hk, we must re-compute the kth step using the new steps size hk+1

to maintain the same solution accuracy

