

BEPCII Control System

Jijiu Zhao BEPCII Control Group 13 Feb. 2009, KEK

BEPCII Project

- The project BEPCII is for upgrading the BEPC to reach a higher luminosity, 1*10³³cm⁻²s⁻¹,100 times to the BEPC.
- BEPCII still serves high energy physics experiments and synchrotron radiation research. (total budget 650M CNY)
 - Energy 1.89GeV at Collision mode (\rightarrow 1.85Gev)
 - Energy 2.5GeV at Synchrotron radiation mode
- The project was started in August 2001
 - Project proposal
 - Conceptual design
- R&D started in October 2002
- System development started in Jan. 2004
- First beam into storage ring in November 2006

- BEPCII adopted Double ring schema and super-conducting devices
- The old control system has been removed. We have to build a new control system and there are 20,000 channels in the control system

System architecture

Adopt "Standard mode" and EPICS system It's the first time that EPICS was adopted officially

Systems Components

- Host computer system
- Control network
- Sub-systems
 - Power supply control
 - Vacuum control
 - RF control
 - Cryogenic control
 - Linac control
- Timing system
- High level applications
- Oracle database
- Central console

Host Computer system

Host computer system in MCC building

- SUN Cluster system (v3.0)
 - 2 SUN V880 servers
 - 8 CPU each (1.2GHz Ultra SPARCIII)
 - 32GB memory each
 - 6*73GB disks each
 - 12*73 shared disk array: RAID 5 + 1 hot spare, NFS
 - Used as EPICS server and for HLA Calculations
- EPICS/ChannelArchiver data server
- Oracle server
- 28 Console computers SUN Blade2000 and Linux PCs

Hardware

- More than 30 VME IOCs (MVME 5100 / 2431)
- And about 25 PC IOCs
- Device control and interface
 - Remote I/O: Power supply and linac control
 - Intelligent controller: Vacuum pumps, gauges
 - VME I/O modules: RF control
 - AB-PLC for cryogenic and Vacuum control
 - Omron PLC for machine protection system
- 1G/100M Ethernet
 - using Cisco C4506 switch, redundancy
- Field Buses
 - ControlNet, CANbus, RS232, RS485

Software

- EPICS Base R3.13.8 for VME IOC
- EPICS Base R3.14.7 for PC IOC
- Host
 - SUN Solaris 8 and PC Linux red hat 9
 - EPICS host tools: MEDM, EDM, VDCT, SNL, Tcl / Tk, ALH, Channel Archiver, Probe, StripTool, SAD, etc.
 - Third party software
 - CVS for software management
 - File server with NFS
- IOC
 - VxWorks 5.4
 - Tornado 2.0 development environment
- HLA
 - developed and transferred from KEKB with SAD environment, after evaluation of HLA for SNS, PEP-II, APS and KEKB
- Oracle database store history data

PS Control

- About 420 PS on Storage ring and TL
 - including SC magnets PS in IR regin
- 13 VME IOCs
- Remote I/O module PSC-PSI for PS on Storage Ring
- PSC and PSI were designed by BNL

PS Local Control Station

PS Control panels

PS_Check_C	OFF_End			TEC	2 POWE	RS	UPPLY	č.		Ramp	Up_	TEQ		
NAME ON/OFF Command			 ✓ 			/home21/op	erator/controlop	i/ps/BSR_Corr	_Monitor.e	dl				
rEQ1&3&9&11	01&3&9&11 ONAux ON OFF OFFAus			BSR Ring Corrector Power Supply Monitor DONE							E			
TEQ2&10	ONAux	ON	OFF	OFFAux	NAM	1E	DESIMON	SETPOINT	CURRENT	NAM	1E	DESIMON	SETPOINT	CURRENT
req4	ONAux	ON	OFF	OFFAux	R2OBV02	0N	-11.419	-11.500	-11.455	R10BV02	OFF	0.018	0.000	0.021
TEO5	ONAux	ON	OFF	OFFAux	R2OBV05	OFF	1.675	0.000	0.012	R10BV05	OFF	-24.636	0.000	0.001
FO6	ONAux	ON	OFF	OFFAIL	R2OBV07	OFF	-2.385	0.000	0.009	R10BV07	OFF	17.220	0.000	0.011
EQ0	ONA			OFFA	R20BV09	OFF	3.622	0.000	-0.002	R1OBV09	OFF	-25.427	0.000	-0.004
EQ	ONAUX	ON		OFFAux	R20BV11	OFF	-13.367	0.000	0.003	R10BV11	OFF	0.000	0.000	-0.013
req8	ONAux	ON	OFF	OFFAux	R20BV13	OFF	1.669	0.000	-0.015	R10BV13	OFF	0.000	0.008	0.003
rEQ12	ONAux	ON	OFF	OFFAux	R20BV15	OFF	-1.456	0.000	0.006	R10BV16	OFF	0.000	0.000	-0.010
req13	ONAux	ON	OFF	OFFAux	R20BV17	OFF	0.643	0.000	0.031	R10BV17	OFF	0.000	0.000	0.011
req14	ONAux	ON	OFF	OFFAux	R30BV15	OFF	2.660	0.000	0.005	R4OBV15	OFF	0.000	0.000	-0.027
TEO15	···· ONAux	ON	OFF	OFFAux	R3OBV13	OFF	-5.678	0.000	0.033	R4OBV13	OFF	0.000	0.000	-0.004
TEO16	ONAW	ON	OFF	OFFA	R30BV11	OFF	0.000	0.000	0.011	R4OBV11	OFF	0.000	0.000	0.012
	ONAUX			OFFAUX	R3OBV09	OFF	0.000	0.000	0.005	R4OBV09	OFF	0.000	0.000	0.016
rEQ17	ONAux	ON	OFF	OFFAux	R3OBV07	OFF	0.000	0.000	-0.009	R4UBV07	OFF	0.000	0.000	-0.007
2					R3OBV03	OFF	0.000	0.000	.8.822	R4OBV03		0.000	0.000	0.040
					R3OBV04		0.000	0.000	-0.134	R4OBV02	OFF	5.963	0.000	0.003
				clow	R2OWBT2	OFF	0.000	0.000	.0.005	PIOWBT2	OFF	0.000	0.000	0.008
RAMP DELIA:	0.5 A 🗆	STEP DUP	TATION:	SIOW	R208T01	OFF	0.000	0.000	-0.017	RIOBT01	OFF	0.000	0.000	0.000
IPS Check A	Jarm End				R2OBT03	OFF	0.000	0.000	-0.001	R1OBT03	OFF	0.000	0.000	0.018
					R2OBT04	OFF	0.000	0.000	-0.004	R1OBT04	OFF	0.000	0.000	-0.005
4					R2OBT05	OFF	0.000	0.000	-0.013	R1OBT05	OFF	0.000	0.000	0.016
					R2OBT07	OFF	0.000	0.000	0.027	R1OBT07	OFF	0.000	0.000	-0.012
					R2OBT09	OFF	0.000	0.000	-0.008	R1OBT09	ON	0.000	0.000	0.041
					R2OBT10	OFF	0.000	0.000	0.006	R1OBT10	OFF	0.000	0.000	0.030
					R20BH17	OFF	0.000	0,000	-0.023	R10BH17	OFF	-0.000	0.000	0.010
					R3OBT10	OFF	0.000	0.000	-0.005	R4OBT10	OFF	0.000	0.000	-0.006
					R3OBT09	OFF	0.000	0.000	0.011	R4OBT09	OFF	0.000	0.000	0.001
						dm 1-10-1t	0.000	Terminal	/hon	ne21/operator/c	ontrolo	home21/operator	controlo	e21/operator/cor

Vacuum Control

- 48 point for vacuum pressures
- 360 pump ,18 valves interlock with vacuum pressure,
- 1000 channel for temperature monitor of vacuum chamber

Vacuum control

- 2 VME IOCs
- Vacuum interlock system with AB-PLC and ControlNet
 - ControlLogix 5555 and AB-1756 I/O modules
 - VME-ControlNet adaptor SST-5136CN-VME
- An IPC for temperature monitoring of vacuum chamber
 - An IPC as EPICS IOC
 - Remote controller communication with IPC by RS-485
 - Developed with LabView
 - Installed LabView-EPICS interface "shared memory"

Vacuum panel

RF Control

• The RF control system is developed by company Thomcast based on EPICS

• 2 Klystrons, 2 SC RF Cavities

• 2 VME IOCs , VME I/O modules, and interlock system with ICS modules

• LLRF system developed by IHEP

Linac Control

- EPICS based system
 - IOC: MVME2431 and Vxworks5.4
 - Remote I/O modules made in China
 - CANbus connect VME IOC and the remote I/O modules
- Linac control system was put into use in Nov. 2003. It's the first EPICS-based control system in IHEP.

Cryogenic Control

- Cryogenic control is made by IHEP
 - valve boxes, tanks, dewars, coils, cooling pipes
 - 2 local stations for SCQ ,SSM and 2 SCRF cavities
 - Using AB-PLC, ControlNet, VME IOCs
 - VME-ControlNet adapter SST-5136-CN-VME used for data exchange between IOC and PLCs
- Compressor control is made by Linde company
 - Using Siemens PLC S7, Profibus
- Data communication program has been developed between the two systems with Wincc/ODK and EPICS/CA

High level applications

- Most high level applications transferred from KEKB
- Using SAD development environment
- Main components
 - Optics
 - Closed orbit correction
 - IP commissionning
 - Slow orbit feedback control
 - BBA, Respons matrix
 - Injection timing

Panels of Optics and COD applications

BEPCII timing system hardware

- 2 EVGs, 19 EVRs
- 13 VME crates and controllers,
- 2 levels of fanout, 5 Fout-7 modules in total.
- GUN-TX and Gun-Rx for e-gun pulser timing
- 4 TD-4Vs for Kickers
- 18 sets of home-made E/O and O/E for linac

Event Timing System

Control Panels

	-/ difficinez i/nome/leige/epicsApp/dimitig
/tmphome21/home/leige/epicsApp/timing200A	Libera timing for e+
BEPCII Kicker Timing Control EXI	Libera trigger enable control
Trigger Statu To stop e- trig To start e- trig e- trig is O	Enable manual control manual
To stop e+ trig To start e+ trig e+ trig is O	oFF Go with kicker trigger auto
DelaySettings DelayReadback	Manually enable or disable libera trigger
nanoSecond step=10ns step=2ns	MultiBunch Ini BSR & et v1 3 2006/11/28
e-K1 8660 866 0 Disable	
e-K2 8700 870 0 Disable	<u>File Edit Window</u> 04/05/2007 23:25:42 <u>H</u> elp ▼
e+K1 8200 820 0 Disable	ulti Bunch Inj Control Bucket Pattern File at
e+K2 8780 878 0 Disable	Start Multi Bunch Ini //home21/operator/bucket/bktPatternBSR
	Set Harmonic Number
e-TriggerCount e+TriggerCount	Pause Multi Bunch In 🔷 396 for Colliding 🗢 402 for SR
42819 91208	Sat Duckat Dattam
	Set Ducket Fattern
	Exit
Linac Repetition Frequency Control	rat Change Paried in second
Виск	Archangerenou in second 3
To stop all timing triggers	A DE-8
in case of emergency, press Beam the Pause button here	n current High Restriction 30
Beam	n Current Low Restriction 20
injBSF	Rp on 192.168.20.235:0.0
Recordence	

To select any bucket

- The event clock is set to 499.8MHz/5.
 - Reason: In EVG-200, the event clock can be generated from RF divided by 4,5,6,8,10 and 12, among which only 5 is a prime number.
- event-clock/7 is set to be the sequencer clock
 - Reason: 7 is a common factor of BEPCII ring RF and linac RF frequency.

To select any bucket

- Bn = MOD(Rn*35, 396), for BEPCII colliding mode
 - Rn is the SequenceRAM unit number, Bn is the bucket number.
 - Using the above formula, any unit from 0 to 395 in SeqRAM can be mapped to one and only one bucket in the ring, which has 396 buckets in total.
- The above formula can generate a table, SeqRAM unit to bucket number. Transform it to a table mapping bucket number to SeqRAM unit number.

Multi bunch injection control

BSR Multi_Bunch	ı Timiı	ng v3.1 Feb. 2008 🔹 🗖					
🛒 <u>F</u> ile <u>E</u> dit <u>W</u> indow		02/15/2008 16:47:17 Help ▼					
— Multi Bunch Inj Control ——	Select Injecting Ring						
Injecting Control Method		○ BER ○ BPR ◆ BSR					
😞 Top_off Injection		BEPCII Status					
Inject till all buckets reach limit.		ready to inject BSR					
for top_off injection		bktPatternBSR loaded, 119 buckets.					
Beam Current High Limit (mA)	120	eGun trigger is ON					
Beam Current Low Limit (mA)	10						
for non-top_off injection		— Timing System Status —					
Bunch Current Limit (mA)	3	Harmoni c Number : 402					
Bucket Selection Method		Linac Injection Rate : 5 Hz					
 the smallest the first 	Bucket Pattern File at						
\bigcirc sequently inject bucket smaller than lim	it	/home21/operator/bucket/bktPatternBER					
Start Multi Bunch Inj		/home21/operator/bucket/bktPatternBPR /home21/operator/bucket/bktPatternBSR					
Stop Multi Bunch Inj	(
Reload Bucket Patter		Lock from Kicker Triggering to eGun Triggering on/off kicker trigger ==> on/off eGun trigger					
BucketChangePeriod in second	1	$igstarrow$ Enable the lock \bigtriangledown Disable the lock					
Vacuum Limit	4.5E-8						
Exit							
Status Display							

Multi-bunch injection control

- Control when to inject and when to stop
 - Top-off injection, a control loop
 - Stop injection when all buckets reach the bunch current limit
- Bucket select method
 - The smallest the first
 - Next smaller than the bunch limit, according to the sequence in the injection pattern definition file
- Criterion
 - Beam current from DCCT, or bunch current from BCM
- Injection pattern definition file: ASCII files

BCM display of 20 * 20 buckets colliding

Performance

Performance: jitter of transport line beam signal to 499.8MHz RF signal is less then 16 pico seconds

Oracle Database

- The Oracle database used to store the machine parameters
 and control data
- It has a Web interface
- Including
 - Static parameters
 - History data from IOCs
 - Manager information
- We have developed the communication programs
 - Between IOC and Oracle
 - Between ChannelAchiver and Oracle
- e-logbook based on Oracle database

Static Data

- Magnet measurement data
- Drawings

「后退 ▼ → ▼ ② ⑦ 凸 ◎ 没搜索 🗟 收藏夹	劉媒体 🧭 🛂 🎒 🕑 🚽 🔄 🖉 🍒 🏈 🖾 🥰	
虹比(D) マー 🙆 http://bepc2as.ihep.ac.cn:8080/bepc2app	/load_data_dba_index.html <	- 输入中文,直接搜索 🔽 🤗转到 链
天下搜索 → 搜索 "MP3、电影、游戏、新闻"	✓ Q 搜索 · ☑ 精彩网址 · 扁收藏 · ◎ DIY · □ 手机铃声 ③电影 □ 前	音乐 🛄 游戏
	・ 🥜 突出显示 📗 🕂 选项 📗 🔀 已经阻止了弹出窗口显示 (12) 🔹 🐸 Hotmail 🛛 🏅 Mess	enger
	一磁铁测量数据导入	
请选择数据类型 〇 二根磁测数据	二维激磁征数据导入	
 激磁特性数据 尺积分激磁数据 	请输入要导入的数据文件	
C四根磁测数据 C六根磁测数据	1、 C:\tomcat\webapps\bepc2app\mt_data\B2D_Magnet\初划 2、 C:\tomcat\webapps\bepc2app\mt_data\B2D_Magnet_ 初划	č
□ 12 LE 04 (01 5 × 18请数据导入方式● 本地数据文件	3	5 5
C 服 务器数 据文件 确 认 提 交	数据导入 退出	

e-loogbook

- Developed BEPCII e-loogbook in Chinese
- E-loogbook saved in Oracle database
- Based on DESY's version

Machine Protection system

- Adopt Omron PLC and PC-link
- Central interlock system
 - Interlock of BEPCII machine start up
 - Interlock between systems, such as the accelerator and Detector
 - Publish the BEPCII running information in IHEP campus
- Low level interlock system

Vacuum, PS and Magnet cooling water, RF interlock.....

中央安全联锁示意图

New console installation

New Control Room

R&D

- From Oct.2002 to Nov. 2003 is the R&D stage
- We built EPICS and Power supply prototype system
- Developing all of I/O driver and communication drivers that we needed
- Transferring SAD environment from KEKB to BEPCII Solaris 8

System Development

- We spent 2 years to developing the system in laboratory (Jan.2004 to Dec. 2005)
- Make off-line and on-line test at Lab
- We have built both of hardware and software of the
 - Host computer system and EPICS environment
 - Redundant network system
 - Power supply control system
 - Vacuum control system
 - RF control system
 - Cryogenic control system
 - Event timing system
 - Oracle database
 - Commissioning applications
 - Machine protection system
 - A new console

System Test

• The system test on site BEPCII from Summer to Oct. 2006

First beam accumulated at Storage Ring

• BEPCII Control system was put into operation in 12 Nov. 2006

BEPCII commissioning

Stages

- Oct.10, 06 Aug.24, 07 Commissioning backup scheme
- Oct.24, 07 Mar.28,08

Commissioning with SCQ without detector

Commissioning and HEP operation with detector - Jun.22, 08 - Dec.18, 08

Milestone

- Nov.12, 06 Start ring commissioning from transport lines
- Nov.14, 06 First turn in the ring
- Nov.18, 06 First e⁻ beam storage in outer ring (SR ring)
- Nov.25, 06 Start SR beam line commissioning and user operation
- Mar. 25 2007 Collision backup scheme
 - Single bunch collision: 9mA*9mA
 - Multi-bunch collision: 7*7, ~20mA/ring
- Jan.29 2008 Collision with 500mA * 500mA with SCQ
- Jul.19 2008 Collision with detector

Current Result

- Lum record: 1.3×10³²m⁻²s⁻¹ @ 489mA×530mA with 90 bunches
- Max. beam current : 600mA of both of e^- and e^+ beam. Max. 93 bunches
- SR mode: 2.5GeV, 250mA with full energy injection, bean life time is 10 hours

Collaborations

- Collaboration with KEKB went through 10 years, KEKB provided us most of their HLA, which speeded development of BEPCII
- We have sent 12 young people to go to KEKB and learn EPICS system and control technology
- We have hosted two Asia EPICS Seminar and EPICS training course in Beijing in 2001 and 2002
- DESY cryogenic control group gave us valuable advices and transferred some source code, which is very helpful for developing BEPCII cryogenic control system
- SSRF Lab. lent us EVG/EVR modules to build the timing prototype at that time our device have not delivered

EPICS Web Page at IHEP

We join the EPICS collaboration and have got a lot of help from EPICS world

● 主页 - 徽游(IyIE2) Beta	
: 文件 亚)编辑 亚) 查看 亚) 收藏 (A) 快捷组 G) 选项 ④) 工具 亚) 窗口 亚) 帮助 亚	
🗋 · 🔇 · 🗇 · 🖻 · 😰 · 🏠 📩 🙀 · 🖃 🧳	
地址 🝙 http://acc-center.ihep.ac.cn/epics/index.htm 🔹	2 ▼ ※ 搜索 ♀
	S系统研究 ₽
→ → → 主页 Epics培训 Epics会议 Epics文档	研究论文
◎ 「您现在的位置:主页	
²³⁴ 加速器中心Epics培训(2003. 2. 27—3. 4)	
系统简介:	
EPICS系统(Experiment Physics and Industrial Contral System): 布式的控制系统的系统集成工具,用于分布式的实时数据库的建立、图形人等。使用EPICS进行系统集成可以减少软件开发和维护的工作量,延长软件I 开放的、标准化的系统。	是1987年由美国LANL和ANL实验室联合开发的实验物理和工业控制软件包,是构建分 机界面的开发、故障报警系统的建立和管理、历史数据存档管理和各种图形显示 的生命周期,提高系统的可靠性,使用EPICS控制系统可以实现网络数据共享,建立
目前国际上有100多家实验室、大学、研究机构的项目使用EPICS系统, 系统,如美国的LANL、ANL、SLAC、BNL、FNAL(DO)、JLAB、SNS、LBL、加拿 能物理研究所、合肥同步辐射光源、上海原子核所于1997年与EPICS国际合 EPICS开发BEPCII控制系统。本网页旨在为加速器中心和高能所用户学习使	包括加速器控制系统高能实验物理数据获取系统、射电天文望远镜和工业过程控制 计的TRIUMF、欧洲的SLS、BESSYII、DESY、日本的KEKB和韩国的PAL等。中科院高 乍组织签订协议,参加EPICS的合作研究。2001年5月BEPCII 工程指挥部决定使用 用EPICS提供必要的资料。
。 1993年1月1日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	<u>印速器中心主页</u>
http://www.aps.anl.gov/epics/	
http://lansce.lanl.gov/lansce8/Epics/	
中国科学院高 主页 go ICALEPCSO ICALEPCSO7 F	
al en	min 🔍 🖪 👁 🐇 🗖 🔰 4

Summary

- Since September 2001, the BEPCII control system has gone a long road for system design and construction
- The project is successful with good quality and reliability
- It has been done on schedule and within the budget
- Thanks all of people who have gave us a lot of help in the past few years!

Thank you for your attention!