Shanghai Deep UV-FEL Control System

> Control Group Ding Jianguo 2009/2/13

SDUV-FEL Control System

- Introduction
- System Design
- Device control
 - Power supply control
 - Vacuum control
 - Microwave control (Phase shifter, modulator...)
- Timing and Interlock
- Others

Introduction

- SDUV-FEL is pre-search of chinese hard X-ray FEL
- There are several FEL facilities is under construction
 - LCLS (Linac Coherent Light Source)
 - EURO-XFEL
 - SCSS(SPring-8 Compact SASE Source)
- SDUV-FEL control system is an extended system based on 100Mev linac control system
 - Keep no change to those old devices which existed in 100Mev
 - New devices will be added in through extended cards/buses
 - Almost all of new devices can use the control method in SSRF
- Total system can be separated to following sub systems
 - Injector sub-system
 - Linac sub-system
 - Undulator sub-system
 - Timing and interlock sub-system

Normal Operation of SDUV FEL

Parameters	Value
Seed laser wavelength	1048 nm
Seed laser duration	10 ps
Electron beam duration	2 ps
Electron bema energy	160 MeV
Peak current	300 A
Normalized emittance	6 mm-mrad
Local energy spread	5×10 ⁻⁵
Modulator period length	50 mm
Modulator length	0.80 m
Modulator gap	Alterable
Radiator period length	25 mm
Radiator length	9.00 m
Radiator gap	10 mm
Radiator resonant wavelength	262 nm

Future Plan

System Design

- SDUV-FEL control system is a distributed system based on "Standard Model"
- OPI Layer
- Front-end Layer
- Device control Layer
 - Ps controller
 - Vacuum controller
 - Pump ps controller
 - PLC, etc.
- Network/filedbuses
 - LAN, DeviceNet, serial, etc.
- As we upgrade from the old control system, we obey the rules "use old devices as much as possible"

System Design (Hardware)

- 1 EPICS file/data server
 - FTP Server
 - NTP Server
 - NFS Server
 - Data Archiver
 - Running soft IOCs
- 4 OPI computers
 - Including original 2 Desktops
- 7 IOCs
 - Including original 3 servers, add 4 new VME7050
- Device controller
 - Already 1 PLC (For vacuum interlock)
 - Add 2 new I/O modules
 - Other device controllers are maintained by other groups

System Design (Software)

OS

- OPI: Scientific linux
- IOC: vxWorks 5.5.1
- EPICS Server: Scientific linux
- EPICS base
 - base 3.14.8.2 / 3.14.9
- OPI Interface
 - edm

Other tools

StripTool, AlarmHandler, Channel Archiver, etc.

Device Control (Magnets Power Supply)

Power supply of Injector and linac

- Old power supplies are kept to be used
- Some new homemade digital power supplies are added
- Magnet's power supply in undulator
 Takes new homemade digital power supplies
 Two twpes of DS, two twpes of interferencies
 - Two types of PS, two types of interfaces in our system
 - DeviceNet
 - Ethernet

Device Control - Vacuum Monitor

Main part of injector and linac

- Keep the same control method of 100Mev in injector and Linac
- Add two vacuum gauges (1 Varian, 1 Pfeiffer), control in the same way as above
- Udulator
 - 6 vacuum gauges (one leybold, others undefined)
 - Controlled through Ethernet

Device Control - Vacuum Monitor (Undulator)

Device control – Vacuum Pump

Injector and linac

- Keep old RS485 control method of 100Mev control in injector and linac
- 3 new pump supplies were added and controlled through Ethernet

Undulator

- 17 new pump power supplies
- Controlled through Ethernet

Device control – Vacuum Pump

Device Control - Valve Control

Use AB PLC-5 to control valves and implement interlock

- There are 3 vacuum parts
 - Injector (valve V1,V2)
 - Linac (valve V2,V3)
 - Udulator (V4,V5)
- When the guage value reaches alarm, relay breaks, PLC output to close valves at both ends
- Comparing with old 100Mev control, 2 modules of 16 channels are added and new control logic was designed
- PLC communicate with VME/IOC based on AB's DCM protocol

Device Control - Valve Control

Device Control - Microwave

One 2856MHz solid state amplifier's control (Has been implemented in 100Mev)

- 4 high power phase shifter, 1 power switch
- 2 modulators (110MW/70MW)

Device Control – Phase Shifter

Phase shifter (including power switch control) takes DC motors, each motor include

- motor direction choice
- Position control
- Position current read back (0-10v)

Use 100MeV Linac microwave control's free ports
 IOC controls motors' digital/analog I/O
 I/O modules' type is VMIC 2536(32 channel DI/DO)
 Vmic4514A(16 channels AI/AO)

Device Control – Phase Shifter

Device Control – Modulator

- 110MW modulator (old control system in 100Mev)
 - Local PLC (SLC-500) control with ladder
 - PLC communicates to IOC through Ethernet by 1746-DCM module
- 70MW modular (newly added device)
 - Local Omoron PLC control
 - Communicate to IOC through ethernet
- All control logic/interlock/execute/data acquisition are all finished by local PLC

Device Control – Modulator

Timing and Interlock

Keep 100MeV design, use BNC company's MODEL 555-8 8 channels digital pulse delay generator

Timing and Interlock - Parameters

Channels: 8

- Trigger types: Ext Trig, Ext Gate, Int, Single Shot, Burst, Duty Cycle
- Repeat freq: 0.01Hz-1.0 MHz
- Duty factor can be adjusted in each channel
- Output pulse range: CMOS/TTL
- Output pulse polarity can be choosed
- Output pulse width:10ns-100s, resolution1ns
- Output pulse delay:0-100s, resolution1ns
- Rising edge < 5ns</p>

Others

Network

3 switch hubs locate on central control room, power supply room and device room, consist of local network

Video/broadcasting system

keep old system

Thanks for your attention! 谢谢大家!